LATTICE ISOMORPHISM BETWEEN SPACES OF INTEGRABLE FUNCTIONS WITH RESPECT TO POSITIVE VECTOR MEASURE

1Mrs.K.Pavithra, 2Mrs.M.Vinithra
Assistant Professor
Department of Mathematics,
Navarasam Arts and Science College for Women, Erode, Tamilnadu, India

Abstract: This paper is concerned with lattice isomorphisms between spaces of integrable functions with respect to positive vector measure to study the relation between different spaces of vector measures \((\Omega_1,\Sigma_1,m_1)\) and \((\Omega_2,\Sigma_2,m_2)\) where \((\Omega_1,\Sigma_1)\) and \((\Omega_2,\Sigma_2)\) are measurable spaces and \(m_1\) and \(m_2\) are countably additive vector measures taking values in real Banach spaces \(X\) and \(Y\) respectively, when the corresponding spaces of integrable functions \(L^1(m_1)\) and \(L^1(m_2)\) are lattice isomorphic.

Keywords: Banach space, Normed linear space, Lattice isomorphism, Vector measure, Vector Lattice.

1. INTRODUCTION

At the beginning of this century the works of Lebesgue and other mathematicians created a modern and complete theory of integration which allowed to integrate in a fully satisfactory way a broad class of real functions with respect to a positive measure. Among the several directions of development of this theory it was the work of Bochner in 1933 who created a Lebesgue type theory in order to integrate vector valued functions with respect to a positive measure.

The technique that they use for this study is to represent the action of the operator as integration with respect to a measure, associated to the operator, with values in the Banach space \(X\). In this way they create a theory for integrating scalar functions with respect to a measure defined on a \(\mathcal{A}\)-algebra and with values in a Banach space.

This paper is organized as follows. Section 2 deals with the definitions of lattice isomorphisms with respect to positive vector measure and Section 3 deals with the lattice isomorphism theorems by using integrable functions and Section 4 concludes the paper.

2. PRELIMINARIES

2.1 Lattice

A lattice is a partially ordered set in which any two elements have a unique supremum (also called a least upper bound or join) and a unique infimum (also called a greatest lower bound or meet).

2.2 Partially ordered set

A partial order is a binary relation \(\leq\) over a set \(P\) which is reflexive, antisymmetric, and transitive, i.e., for all \(a, b,\) and \(c\) in \(P,\) we have that:

- \(a \leq a\) (reflexivity);
- if \(a \leq b\) and \(b \leq a\) then \(a = b\) (antisymmetry);
- if \(a \leq b\) and \(b \leq c\) then \(a \leq c\) (transitivity).

2.3 Lattice Isomorphism

Let \(L = (L,\wedge,\vee)\) and \(K = (K,\wedge,\vee)\) be lattices and let \(h : L \rightarrow K.\) A lattice isomorphism is a one-to-one and onto lattice homomorphism.

2.4 Lattice homomorphism

Let \(L = (L,\wedge,\vee)\) and \(K = (K,\wedge,\vee)\) be lattices and let \(h : L \rightarrow K\) then \(h\) is a lattice homomorphism of any \(a, b \in L, h(a\vee b) = h(a) \vee h(b)\) & \((a\wedge b) = h(a) \wedge h(b).\) In other words, the mapping \(h\) is a lattice homomorphism if it is both join-homomorphism and meet a homomorphism.
2.5 \(L^p\) Spaces

Let \(1 \leq p < \infty\) and \((S, \Sigma, \mu)\) be a measure space. Consider the set of all measurable functions from \(S\) to \(C\) (or \(R\)) whose absolute value raised to the \(p\)-th power has finite integral, or equivalently, that

\[
\|f\|_p = \left(\int_S |f|^p \, d\mu\right)^{\frac{1}{p}} < \infty
\]

such functions forms a vector space, with the following natural operations:

\[
(f + g)(x) = f(x) + g(x), \quad \text{and} \quad (\lambda f)(x) = \lambda f(x)
\]

2.6 Vector Measure

Given a field of sets \((\Omega, \mathcal{F})\) and a Banach space \(X\), a finitely additive vector measure (or measure, for short) is a function \(\mu : \mathcal{F} \to X\) such that for any two disjoint sets \(A\) and \(B\) in \(\mathcal{F}\) one has

\[
\mu(A \cup B) = \mu(A) + \mu(B).
\]

called countably additive if for any sequence \(A_i\) of disjoint sets in \(\mathcal{F}\) such that their union is in \(\mathcal{F}\) it holds that

\[
\mu\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} \mu(A_i)
\]

with the series on the right-hand side convergent in the norm of the Banach space \(X\).

2.7 Integrable

A measurable function \(f : \Omega \to R\) is called integrable with respect to \(m\) if:

(i) \(f \in L^1(|m(x)|)\) for all \(x' \in X'\), and

(ii) for each \(A \in \Sigma\) there exists an element \(f dm \in X\)

\(A\)

(called the integral of \(f\) over \(A\)) such that

\[
\langle f dm, x' \rangle = \int_A f dm(x') \text{ for all } x' \in X'
\]

3. Lattice isomorphisms with respect to positive vector measure

Result 3.1 :

A lattice isomorphism between \(L^1(m_1)\) and \(L^1(m_2)\) coming from a Boolean Algebra isomorphism \(\Phi : \Sigma_1 \to \Sigma_2\) we need to impose some more extra conditions on \(\Phi\).

Namely

(C1) There is a constant \(K_1 > 0\) such that for each \(0 \leq y' \in B Y'\)

and each \(\pi \in \Pi(\Omega_1)\) there exists \(0 \leq x' \in B X'\) satisfying that

\[
\langle m_1(\Phi(A)), y' \rangle \leq K_1 \langle m_1(A), x' \rangle, A \in \pi.
\]

(C2) There is a constant \(K_2 > 0\) such that for each \(0 \leq x' \in B X'\) and each \(\pi \in \Pi(\Omega_1)\) there exists \(0 \leq y' \in B Y'\) satisfying that

\[
\langle m_2(\Phi(A)), y' \rangle \leq K_2 \langle m_2(A), x' \rangle, A \in \pi.
\]
Result 3.2

If $\Phi : \Sigma_1 [m_1] \rightarrow \Sigma_2 [m_2]$ is an isomorphism of Boolean algebras then there is unique isometric multiplicative lattice isomorphism

$$T : L^\infty(m_1) \rightarrow L^\infty(m_2)$$
such that

$$T(\chi_A) = \chi_{\Phi(A)} \text{ for all } A \in \Sigma_1.$$

In particular $T(\chi_{\Omega_1}) = \chi_{\Omega_2}.$

Result 3.3

If $T : L^\infty(m_1) \rightarrow L^\infty(m_2)$ is a lattice isomorphism, then

$$\Phi : [A] \in \Sigma[m_1] \rightarrow \Phi(A) := [\text{supp}(T\chi_A)] \in \Sigma[m_2]$$
is an isomorphism of Boolean algebras such that $T(\chi_A) = T(\chi_{\Phi(A)}) \text{ for all } A \in \Sigma_1.$ If moreover T is multiplicative then $T(\chi_A) = \chi_{\Phi(A)} \text{ for all } A \in \Sigma_1.$

Theorem 3.4

Let $\Phi : \Sigma_1 [m_1] \rightarrow \Sigma_2 [m_2]$ be an isomorphism of Boolean algebras such that the conditions (C1) and (C2) hold. Then there exists a unique lattice isomorphism

$$T : L^1(m_1) \rightarrow L^1(m_2)$$
such that $T(L^\infty(m_1)) \subseteq L^\infty(m_2).$ Moreover, the restriction

$$T : L^\infty(m_1) \rightarrow L^\infty(m_2)$$
is an isometric multiplicative lattice isomorphism satisfying

$T(\chi_A) = \chi_{\Phi(A)} \text{ for all } A \in \Sigma_1.$ In particular, $T(\chi_{\Omega_1}) = \chi_{\Omega_2}.$

Proof:

Suppose that $\Phi : \Sigma_1 [m_1] \rightarrow \Sigma_2 [m_2]$ is an isomorphism of Boolean algebras. For each simple function

$$N \phi = \sum_{k=1}^{N} a_k \chi_{A_k} \text{ of } L^1(m_1) \text{ we define}$$

$$T(\phi) := \sum_{k=1}^{N} a_k \chi_{\Phi(A_k)}$$

which is a simple function in $L^1(m_2).$ As in the L^∞ case we have defined a map

$$T : S(m_1) \rightarrow S(m_2)$$
from the set of simple functions of $L^1(m_1)$ into the set of simple functions of $L^1(m_2)$ that is a multiplicative and lattice preserving linear bijection. Moreover, it satisfies

$$||T(\phi)||_{L^\infty(m_2)} = ||\phi||_{L^\infty(m_1)}$$
for all $\phi \in S(m_1).$

Let us prove now that the requirements (C1) and (C2) in the statement of the theorem imply continuity of the operator $T : S(m_1) \rightarrow S(m_2)$ and its inverse with respect to the norms $||.||_{L^1(m_1)}$ and $||.||_{L^1(m_2)},$ respectively. Since the measure m_2 is positive, for each simple function

$$N \phi = \sum_{k=1}^{N} a_k \chi_{A_k}$$
an application of Hahn Banach theorem gives

$$||T(\phi)||_{L^1(m_2)} = \int_{\Omega_2} |T(\phi)(m_2)| dy$$

for $N \phi.$
\[\sum_{k=1}^{N} 1 \{ a_k l m_2(\varphi(A_k)) \} \]

\[\langle \sum_{k=1}^{N} a_k l m_2(\varphi(A_k)), y' \rangle \]

\[= \sum_{k=1}^{N} 1 \{ a_k l m_2(\varphi(A_k)) \} \langle m_2(\varphi(A_k)), y' \rangle \]

For a certain \(0 \leq y' \in B_{Y} \) from (C1) we obtain there exists \(0 \leq x' \in B_{X} \) such that

\[\langle m_2(\Phi(A_k)) y' \rangle \leq K_1 \langle m_1(A_k), x' \rangle \]

for every \(k = 1, 2, \ldots, N \). Thus (3.1) implies

\[\| T(\varphi) \| _{L^1(m_2)} = \sum_{k=1}^{N} |a_k| \langle m_2(\varphi(A_k)), y' \rangle \]

\[\leq K_1 \sum_{k=1}^{N} |a_k| \langle m_1(A_k), x' \rangle \]

\[\leq K_1 \sum_{k=1}^{N} |a_k| \| m_1(A_k) \| _{X} \]

\[\leq K_1 \| \varphi \| _{L^1(m_1)} \]

A similar argument proves that \(\| \varphi \| _{L^1(m_1)} \leq k_2 \| T(\varphi) \| _{L^1(m_2)} \) for every \(\varphi \in S(m_1) \). Therefore can be expanded from \(L^1(m_1) \) to \(L^1(m_2) \) and the extension satisfied the conditions in the statement of the theorem, since \(S(m_1) \) is dense in \(L^1(m_2) \).

The uniqueness and properties of \(T: L^\infty(m_1) \to L^\infty(m_2) \) are clearly seen for result 3.2.

On the opposite way, we have the one that follows, that is the analogous result to result 3.3.

Conclusion

In this paper, lattice isomorphisms with respect to positive vector measure are investigated with the help of integrable functions.

REFERENCES