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Abstract- Deep neural networks play a critical role in the remarkable developments in the field of computer 

vision. Convolutional Neural Networks (CNN), widely used in computer vision tasks, require substantial 

computation and memory resources, making it challenging for these models to run on resource-constrained 

devices. Quantization is an efficient way to reduce the compute and memory footprint of these models, making 

it possible to run them on edge devices. Many techniques have been studied to allow practical applications of 

quantization CNN models on mobile or edge devices. The practical implementation and adoption of these 

quantization techniques is heavily limited by approaches available in tools i.e. TFlite/Pytorch and underlying 

hardware. However, possible degradation in performance makes it challenging to achieve comparable 

performance to the original float-point model. In this paper, we will review different aspects of quantization, 

including assumptions, best practices, tools, and recipes to get the best results from quantization. 
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1. Introduction 

Convolutional Neural Networks (CNN) have evolved in model complexity and computation to achieve the best possible 

accuracy. This limits them from deployment on resource constrained hardwares like mobile, AR/VR, drones or any 

other edge devices. Successful deployment of CNN model on these hardware requires small model size, low compute 

and high power efficiency. Many research works focused on developing efficient model architectures, model 

compression and computational efficiency of CNNs while trying to maintain acceptable or minimal accuracy loss. 

MobileNet[1], SqueezeNet[2], ShuffleNet[3] and DenseNet[4] design efficient network architectures that try to use 

compute and memory efficient operations. Similarly quantizing weights/activations of a CNN from 32 bit float-point 

into lower bit precision, led to approaches like Binary Neural Networks[5], XNOR-net[6], Ternary weight networks[7] 

and many more [8-13]. These quantization methods result in degradation of model accuracy due to quantization error, 

it is often critical to balance latency vs accuracy tradeoff. The lower than 8 bit quantization schemes show significant 

accuracy degradation and may not generalize well for different models. Quantization approaches that use 8 bit integers 

have been the popular choice due to its efficient tradeoff between latency vs accuracy, many hardware platforms have 

native support of 8 bit integer arithmetic which makes it portable on many platforms. This has led to many popular open 

source tools i.e. TFlite, Pytorch and AIMET[27] supporting 8 bit quantization for weights and activations.  

 

In this paper we will be focusing on the 8 bit integer quantization approach and various approaches available to achieve 

comparable accuracy to the float-point model. The rest of the paper is organized as follows Section 2 describes an 

overview of the two quantization schemes for representation of float-point distribution. Section 3 presents techniques 

to quantize CNN models and available tools for the implementation. Section 4 discusses the best Network Architecture 

choices to enable inference optimization. Sections 5-7 gives details of integer quantization, evaluation and analysis.  

Sections 8-9 describe alternative approaches for improving quantized accuracy and best practices.  

 

2. Quantization Scheme     

 

In this section we describe the mathematical definition of the quantization scheme which allows efficient 

implementation of integer arithmetic operations on the quantized values. The mapping for real numbers r  to quantized 

integers q as equation (1), where S and Z are scale and zero point quantization parameters. For 8 bit quantization, q is 

quantized 8 bit integer, scale is usually a float-point value that is represented using fixed point representation[], zero-

point is of the same type as quantized value. Special constraint on the zero-point to ensure that real zero values are 

quantized without any error. The quantized values can be mapped to real values as equation (2) 

 

𝑞 =  𝑟𝑜𝑢𝑛𝑑 (𝑟/𝑆 +  𝑍)                 (1) 

 

    𝑟 =  𝑆(𝑞 −  𝑍)           (2) 
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In case of float-point distribution, the quantization parameters can be S and Z can be calculated based on the distribution 

 

𝑆 =  (𝑟 𝑚𝑎𝑥 −  𝑟 𝑚𝑖𝑛)/(𝑞 𝑚𝑎𝑥 −  𝑞 𝑚𝑖𝑛)                    (3) 

 

      𝑍 =  𝑟𝑜𝑢𝑛𝑑 (𝑞 𝑚𝑎𝑥 −  𝑟 𝑚𝑎𝑥/𝑆)                              (4)                            

 

These quantization schemes are broadly classified into two types i) Symmetric quantization and ii) Asymmetric 

quantization, depending on the nature of the float-point distribution to be quantized. 

 

 

2.1 Symmetric Quantization 

This implementation assumes the quantization is symmetric around zero as shown in Fig. 1, which allows the 

quantization parameter zero-point Z = 0. This allows for efficient implementation of integer arithmetic by eliminating 

the handling of zero-point.  

 
Fig 1. Symmetric distribution with zero point = 0 

 

2.2 Asymmetric Quantization 

Asymmetric quantization allows efficient utilization of bit width by account for the distribution for scale and shift. This 

allows trade off computational complexity to achieve better reduction of quantization error.  

 
Fig 2. Asymmetric distribution with non-zero zero point 
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The choice of the quantization scheme Symmetric vs Asymmetric depends on the nature of the distribution, needing to 

trade off between accuracy and performance benefits. Fig 3. Shows how asymmetric quantization can be used to handle 

shifts in the data distribution, while symmetric distribution might lead to excessive quantization noise due to it inability 

to quantization resolution effectively 

 
Fig 3. Shows scale and shift effects affected by symmetric vs Asymmetric quantization 

 

3. Convolutional Neural Networks (CNN) quantization 

In the case of CNN, which is trained using float-point arithmetic, we need to quantize weights and activations to 

efficiently  store and compute them on embedded devices. Tensors are fundamental building blocks to represent 

multidimensional data for weight and activation of the network. In the next section we will discuss different design 

choices for quantizing these tensors 

 

3.1 Quantization Granularity 

When trying to quantize the float-point tensor there are various levels of quantization granularity you can choose to best 

suit the distribution. The most popular approach is to use i) per tensor, where the quantization parameters are computed 

for the entire tensor and ii) per channel quantization, where the quantization parameters are calculated per channel. The 

weights of the CNNs are usually symmetric [14], as shown by the empirical data and each layer is convolved with many 

different convolutional filters, which can have different ranges making it suitable for symmetric per channel 

quantization. Activation quantization needed to handle a wider variety of activation distribution is usually not centered 

around zero, due to activations like ReLU, which makes it suitable for asymmetric per tensor quantization. Batch 

normalization helps regularize the activation distribution, making them more amenable to quantization.  

 
Fig 4. Histogram distribution of weights and activations [14] 
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3.2 Types of Quantization 

The quantization techniques used for CNN are broadly classified as i) Post Training Quantization (PTQ) and ii) 

Quantization Aware Training (QAT). CNN parameters need to be adjusted to maintain the accuracy performance after 

quantization. The process of retraining the model to account for quantization is called Quantization Aware Training 

(QAT) or without retraining through Post Training Quantization (PTQ). A high level comparison of two approaches[] 

is shown in Fig 5.  

 

 
Fig 5. Comparison of Quantization Aware Training (QAT) on the left and Post Training Quantization (PTQ) on the 

right 

 

3.3 Post Training Quantization (PTQ) 

PTQ is a simple yet efficient technique that uses a fully trained float-point model along with a small calibration dataset 

for quantization. Unlike weights, quantization of activation can be difficult as the distribution is unknown, we use 

calibration dataset to collect the statistics and compute quantization parameters for the network. We will explore 

different challenges in achieving better accuracy through PTQ in Sections 5-7. 

 

3.4 Quantization Aware Training (QAT) 

Quantization Aware Training (QAT) tries to emulate the quantization of activation in order to allow the network to 

learn and achieve improvement performance for quantized results. This is achieved through introducing fake 

quantization nodes as discussed in Section 8. This approach has shown to recover the lost accuracy due to quantization, 

however the unavailability of training data and compute resources to train the model should be limiting the practical 

implementation of this approach.  

 

3.5 Quantization Tools 

The ultimate choice of quantization scheme depends on the available tools. TFlite and Pytorch quantizations are the 

most popular tools used for quantization of CNNs, both support 8 bit integer quantization. TFlite uses symmetric per 

channel quantization for weights and Asymmetrics quantization for activation, with optional support for 16 bit integer 

activation. Pytorch also supports 8 bit integer quantization as an experimental feature, allowing the user to choose the 

quantization scheme and granularity. In this study, we will be using TFlite quantization due to its ease of use and 

quantization analysis tools. These tools also allow mixed precision quantization and lawyer wise quantization error 

analysis tools. Before diving into the details, we will be discussing the effects of architecture choices on the overall 

quantization performance.  

 

4. Network Architecture 

Network Architecture Search (NAS) research was focused on development of model architecture, which are primarily 

trying to reduce the overall compute and size of the model. These models prioritize using depthwise convolutions to 

reduce the compute by order of magnitude. NAS based models like MobileNet/EfficientNet are deeper and leaner, 

making them suitable for cache based systems. Unlike most of the models trained for accuracy, which need to be bulked 

up to achieve higher accuracy,  these models are easier targets for quantization due to redundancy within the network. 

However, models trained for efficiency like Mobilenet/EfficientNet are relatively difficult to quantize and tend to have 

significant degradation in accuracy. NAS can be optimized to select quantization aware networks and are better suited 

for the hardware. Overall efficiency of the network architecture depends on the quantization scheme, optimization tools 

and underlying hardware. NAS models are effective at finding architectures that are best suited for quantization and 

quantization aware network architecture to improve the robustness of the model. Quantization is expected to improve 

the inference latency, these improvements from quantization are hardware dependent with multiple factors such as on 

device memory, bandwidth, compute capacity affecting the quantization speed up. Hence, hardware-aware quantization 

will achieve the best overall performance. 
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Fig 6. Comparison of Resnet50 and EfficientNet-B0 quantized results on Nvidia-V100 [25] 

 

Activation functions need a special mention here,  ReLU activation out performs other activation functions ReLU6, 

Sigmoid to name a few for precision requirement and quantization support. The effectiveness of different action 

functions for quantization of the network, based on the quantization noise using SQNR was used as a metric[]. ReLU 

showed to have much better results compared to ReLU6, even though ReLU6 reduces the quantization range, the signal 

power is reduced by clipping activations which affects the signal distribution with distortion making it less quantization 

friendly. Sigmoid activations are usually implemented using LUTs tend to have higher quantization error and significant 

performance limitations for hardware implementation.  

 

5. Post Training Quantization 

Post Training Quantization (PTQ) is the most popular approach for quantization as it is not resource intensive and only 

needs a small representative dataset to achieve acceptable results. PTQ is applied on pre-trained models, especially for 

cases where data is unavailable (privacy reasons) or limited availability of the data. Recent studies have shown that 

PTQ without any calibration data is possible through synthetic data[16] or by using statistical knowledge of the network 

architecture[17]. Since it does not need any retraining PTQ quantization is not resource intensive but may result in 

significant accuracy degradation[18].  PTQ can be applied where the data is limited or unlabeled, this often comes at 

the cost of lower accuracy especially for low-precision quantization.  

 

5.1 Layer Fusion 

Before quantization most of the inference optimization enables layer fusion for convolution + batch normalization + 

ReLU activations. It is advisable to enable this fusion before quantization, as it reduces the number of potential 

quantization error sources. Models with batch normalization usually have it as a separate layer, it is possible to fold 

their operations into previous convolution layer weights and biases for inference efficiency, also referred to as 

batchnorm constant folding in equations 5-7. 

BatchNorm(w) = 𝛾(
𝑤 − 𝜇

√𝜎2+ 𝜖
)  +  𝑏     (5)  

𝑤𝑓𝑜𝑙𝑑 =  
𝛾𝑤

√𝜎2 + 𝜖
                                (6) 

𝑏𝑓𝑜𝑙𝑑  =  𝑏 −  𝛾(
𝜇

√𝜎2+ 𝜖
)                  (7)  

Where γ is the batch normalization’s scale parameter, σ is the estimate of the variance of convolution results across the 

batch, and ε is just a small constant for numerical stability. After folding, the batch-normalized convolutional layer 

reduces to the simple convolutional layer depicted with the folded weights 𝑤𝑓𝑜𝑙𝑑 and the corresponding folded biases. 

Similarly activation functions ReLU/ReLU6 are also integrated to reduce data movement and improve efficiency of 

inference.  

 

5.2 Calibration Dataset 

Calibration dataset plays a critical role in determining the quantization parameters used for PTQ, these can be randomly 

selected unlabeled data representative of actual distribution expected during inference time. Other techniques like 

SelectQ[], base these selection on the statistics of the activations distribution for optimal and consistent performance 

with small dataset as small as 10-100 images. The upper limit on deciding the calibration dataset size is to ensure it is 

diverse enough to represent the actual inference inputs in order to avoid introducing bias error into the model. Research 
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[], shows that calibration dataset as big as few 100~1000 shuffled images generalize the classification accuracy of a 

network trained in ImageNet dataset which contains ~1M images. 

 
Fig 7. Effects of calibration dataset size on quantized model accuracy 

 

6. Quantization Evaluation 

Accuracy of the quantized model depends heavily on the network. The quantization scheme used for the model depends 

on the network architecture. Fig. is an overview of how different quantization schemes work with popular network 

architectures [15]. Bulkier models ResNet50 seems to be amenable to similar quantization schemes that provide both 

performance and accuracy, however they inherently have a lot more compute. The more compute efficient model 

Mobilenet needs more complex quantization schemes that allow for lower quantization error at the cost of performance. 

So, it is critical to choose an architecture that is the best trade off between quantization accuracy and overall 

performance.  

 
Fig 8. Evaluation of quantization model accuracy for different quantization schemes 
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Table 1. Evaluation of quantization model accuracy for different quantization schemes [14] 

 

7. Quantization Analysis 

Quantization of float-point models into 8-bit fixed point models, introduces quantization noise in the weights and 

activation, which leads to degradation in model performance. Common pitfalls include passing quantized input/output 

to the fully quantized model. This performance degradation might lead to minor degradation in accuracy or complete 

failure in model prediction.  

As illustrated in the Fig, even a small change in the weights can lead to significant increase in loss. 

 
Fig 9. The loss surfaces of ResNet-56 with/without skip connections by Hao Li et al [26] 

 

As shown in Fig 10.  various sources of quantization error in a quantized implementation of convolution operation, that 

can lead to degradation in accuracy of the model. The bit precision used for different values depends on precision 

requirement i.e. bias is quantized to 32bit as the networks are more sensitive to quantization error in bias which can 

contribute directly to the output. These constant bias values don’t contribute much to the overall size of the network. 

Similarly the accumulators used for storing these results can use 32 bit accumulators to avoid any potential overall or 

clipping. In the following section we discuss a few tools to debug these error, which vary in scope from network level 

to single operation level.  
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Fig 10. Shows various sources of quantization error during fixed-point convolution operations. 

 

7.1 Quantization Error Analysis 

In section, we will try to investigate when quantization fails through quantization error analysis, when trying to quantize 

a model we should ensure that all the layers have quantization support or atleast have float-point fall back if needed. In 

many cases the quantization error can be attributed to few problematic layers, many popular tools for quantization 

TFlite/Pytorch provide tools for layerwise quantization error analysis that enable users to identify problematic layers 

and fix them as shown in Fig 10.  

 

 
Fig 10. Analysis of layerwise root mean square error (rsme) for float-point vs quantized activations using tflite 

 

7.2 Weight Equalization 

Large difference in weight values for different output channels: more quantization error. Asymmetric/Symmetric per 

channel quantization helps handle better diversity on the weight distribution. Weight equalization[17] is an effective 

way to reduce the variance of weight distribution across channels to make them more robust to quantization. This is 

evident from the fact that many modern compute efficient networks like MobileNet/EfficientNet need per tensor 

quantization[], which means the same quantization parameters cannot be used to represent such high variation in weights 

across channels. An intuitive approach to improve the model quantization performance to rescale the weights for each 

output channel such that their ranges are more similar. This allows us to increase the range of values that are too low 

and reduce the range of values that are too high, thus reducing the quantization error. This can be achieved by exploiting 

scale equivariance across layers with point-wise linear activation functions. This allows us to change the weight 

distribution, without affecting the output of the model [].  
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Fig 11. Illustration of scaling channels for cross-layer weight equalization 

 
Fig 12. Visualization showing pre/post-equalization weights [27] 

 

7.3 Mixed Precision 

Among many ways to mitigate the problem with quantization error, it might seem a straightforward approach to use 

large bit width by increasing the precision to 16-bit or FP16 from 8-bit, could help recover some of the lost accuracy. 

Selective quantization allows mixed precision inference using different 8-bit/16-bit integers or FP16/FP32 for 

debugging. Various studies show how different bit width for quantizing weights/activations effects [], the overall 

performance of the networks.  

 

7.4 Visualization  

Visualization of the weights/activations allows us to estimate their distribution effects of quantization. These could be 

powerful tools to give user intuition into the effects of quantization on the network and possible artifacts of quantization 

error.  

 

7.5 Min/Max Tuning 

Quantization parameters are determined based on the min/max ranges of the distribution as discussed in Section 2. 

Min/Max tuning is used to eliminate outliers of weights/activation that cause all other weights/activations to be less 

precise. These ranges are determined  differently for weights/activations. Weights are fixed for a trained model, this 

enables substantial opportunities for efficient quantization. Activation distribution depends on the input to the network, 

to estimate these ranges we can either use the range stored during training or through a calibration dataset for 

quantization. We will briefly discuss different methods used to estimate the activation ranges for quantization. 

Activation quantization parameter selection is challenging as discussed earlier, even with a representative calibration 

dataset. The range of the activation helps decide the clipping range from actual distribution, and helps choose trade off 

between range and quantization error. There are many approached to select the optimal  

 

Mean/Standard Deviation 

The mean 𝜇 and standard deviation 𝜎 of the activations are used to decide the min/max clipping. This is best suited for 

a distribution that can be approximated to gaussian and centered around the mean. 

𝑚𝑖𝑛/𝑚𝑎𝑥 =  𝜇 +/- 3𝜎  

Histogram 

The distribution histogram based methods used percentile % to select the range to be quantized. It is usually large 

enough to be representative of the distribution and avoid outliers that can significantly affect the quantization accuracy. 
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Set the range to a percentile of the distribution of absolute values seen during calibration [21]. For example, 99% 

calibration would clip 1% of the largest magnitude values. This is an efficient way to eliminate outliers that could 

adversely affect the quantization accuracy. 

 

Moving Average 

The default implementation of tensorflow [28], uses moving average to update the min/max values for each iteration of 

the calibration dataset.  

 

Entropy 

Min/Max values selected to minimize the entropy of the distribution. It uses KL divergence to minimize information 

loss between the original floating-point values and values that could be represented by the quantized format. This is the 

default method used by TensorRT []. It is particularly useful when not all values to be quantized in the tensor are not 

equally important.  

 

8. Quantization Aware Training 

Quantization changes to the trained model may move the model away from point convergence as discussed in 

quantization error analysis, which was trained in float-point precision as discussed in Section 5.1. QAT will address 

this issue by converging the model to a different and potentially better point for the quantized model. QAT tries to 

emulate quantized inference during training, while the actual training still happens in float-point. The quantization is 

modeled during training by inserting fake quantization nodes on both weights and activations. Back propagation is 

performed on float-point, as accumulating the gradients in quantized precision can result in diminishing gradients or 

high error especially in low-precision [22]. QAT has been shown to work despite the approximation for quantization 

and back propagation, closing the gap between quantized accuracy results to less than 1% of float-point in many models 

for classification. The QAT is computationally expensive as it needs retraining the model for several epochs to recover 

accuracy especially for low bit precision. This is a worthwhile investment retraining when possible for applications 

where accuracy is of utmost importance. It also allows for simpler quantization schemes which have more efficient 

implementations. During QAT, it is also possible to collect statistical data for quantization parameter selection, which 

can further improve PTQ accuracy.  

 

 
Fig x. Shows simulation of quantization during QAT 
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9. Best Practices 

In this section we will try to summarize best practices to have efficient quantized model implementation on device 

    

Model Selection 

Efficiency of the quantization is a function of the model size and its architecture. Large models are more tolerant of 

quantization error. NAS for efficient architecture for quantization and hardware aware model optimization provide the 

best performance on device.  

Quantization tools 

Availability of quantization tools limits the quantization schemes and analysis tools for model quantization. TFlite and 

Pytorch quantization tools allow for different quantization schemes, analysis tools and QAT, to improve and fix 

quantized model accuracy.  

Calibration Dataset 

Quantization is essentially a fine tuning process, where the calibration dataset needs to be representative of the inference 

time inputs. The statistical data from around ~(100-1000) samples, seem to be enough to model the distribution of a 

large dataset like ImageNet. The upper limit on the size of the dataset is based on adding diversity to avoid introducing 

any bias into the quantized network. 

 

Quantization Evaluation 

The overall performance of the network is dependent on many factors related to network architecture and quantization. 

It is always advised to evaluate the quantized accuracy of the model using these different quantization schemes before 

diving deep into the quantization error analysis and debugging.  

Quantization Analysis 

There are various sources of quantization error that affect the overall performance of the network. In case of catastrophic 

failures, it is usually helpful to identify potentially problematic layers through mixed precision inference. Once 

identified the lost accuracy could potentially be recovered through techniques like weight equalization and min/max 

tuning.  

Quantization Aware Training 

Fine tuning an already trained model for quantization accuracy helps recover the lost quantization accuracy within < 

1% of the float point model. This process can be significantly expensive in terms of computer and resource as you need 

to retrain the model for multiple epochs. It is worthwhile in applications where quantized accuracy is of utmost 

importance.  
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