Metro Domination Number of Diamond Snake Graph

Rajeshwari Shibaraya¹,a), Basavaraju G C²,b), Anant Kumar Kulkarni³,c) Vishukumar M ⁴,d)

¹Department of Mathematics
Srinivas Institute of engineering and technology, Karnataka, India
²Department of Mathematics
Brindavan College of engineering, Bengaluru, Karnataka, India
³Department of Mathematics
Srinivas institute of technology, Karnataka, India
⁴Department of Mathematics
Reva University, Bengaluru, Karnataka, India

Abstract: A subset D of the vertex set V of the graph G(V, E) is said to be a dominating set if every vertex in V – D is adjacent to at least one vertex in D. The minimum cardinality of the dominating set is called the domination number. The metro domination number is the order of a minimum dominating set which resolves as a metric as a metric set. It is denoted by \(\gamma_D(G) \). In this paper we determine the metro domination number of diamond snake graphs.

Keywords: fan graph, fire cracker graph, dominating set, domination number, metric dimension, metro domination.

1 Introduction

Every graph considered here are simple, finite, undirected and connected. A graph \(G = (V, E) \) and \(u, v \in V, d_G(u, v) \) is denoted as distance between \(u \) and \(v \) in \(G \). We refer [3,6,7,8,9,11] for the works on metro domination.

2 Preliminary Results

Definition 2.1: A set \(D \) of vertices in a graph \(G(V, E) \) is said to be a dominating set \(G \), if every vertex in \(V – D \) is adjacent to some vertex in \(D \). The domination number \(\gamma(G) \) of a graph \(G \) is the minimum cardinality of the dominating set.

Definition 2.2: A subset \(S \subseteq V \) is called resolving set if every pair of \(u, v \in V \), there exists a vertex \(w \in V \) such that the distance between vertices \(u, v \in V \) is represented as \(d(u, w) \neq d(v, w) \). A set of vertices \(S \subseteq V(G) \) resolves \(G \), then \(S \) is a resolving set of \(G \) and its minimum cardinality is a metric basis of \(G \) and its cardinality is the metric dimension of \(G \) and its \(\beta(G) \).

Definition 2.3: Metro domination number is introduced by B. Sooryanarayana and Raghunath[4]. A dominating set \(D \) of \(V(G) \) is both dominating set as well as resolving set is called the metro dominating set of \(G \) and G. The minimum cardinality of metro dominating set of \(G \) is called metro domination number of \(G \), denoted by \(\gamma_D(G) \).

Definition 2.4: The graph \(G \) consists of collection of \(n \) cycles \(C_4 \), these cycles are connected in such a way that two adjacent cycles sharing a common vertex, the resulting graph is called the diamond snake graph and it is denoted by \(D_n \). A diamond snake graph has \(3n + 1 \) vertices and \(4n \) edges, where \(n \) is the number of blocks in the diamond snake. A snake is an Eulerian path that has no chords [3].

Definition 2.5: A fan graph \(F_{m,n} = \overline{K_m} + P_n \), where \(\overline{K_m} \) is the empty graph (consists of \(m \) isolated vertices with no edges) and \(P_n \) is the path graph on \(n \) vertices. [3]

Definition 2.6: An fire cracker \(F(m, n) \) is a graph obtained by the series of interconnected \(m \) copies of \(n \) stars by linking one leaf from each. [3]

Corollary 2.6: For any integer \(n \), \(\beta(D_n) = \begin{cases} 3n, & n \text{ is even} \\ 3n - 1, & n \text{ is odd} \end{cases} \)

3 Main Results

Theorem 3.1: For any integer \(n \), \(\gamma_D(D_n) = \begin{cases} 3n, & n \text{ is even} \\ 3n - 1, & n \text{ is odd} \end{cases} \)

Proof: Let \(G = D \) be a diamond graph on \(3n + 1 \) vertices with \(4n \) edges and let \(D \) be a dominating set of graph \(G \). By the definition of diamond snake graph \(G \), consists of collection of \(n \) cycles \(C_4 \), these cycles are connected in such a way that any two adjacent cycles sharing a common vertex, where \(n \) is the number of blocks in the diamond snake. But we know that \(\gamma(D_n) = n + 1 \) and corollary 2.6, since a metro dominating set \(D \) is also dominating set.

Thus \(\gamma_D(D_n) \geq 3n \) \hspace{1cm} (1)

We define a set \(D \) as follows,
Choose D in the above cases then D is a dominating set and $|D| = 3n$. By using 2.6, the dominating set also serves as metric set.

Thus $\gamma_{\beta}(D_n) \leq 3n$ (2)

From (1) and (2),

$\gamma_{\beta}(D_n) = 3n$

Example: Metro domination number of diamond snake graph (D_3) is 5.

![Diamond snake graph](image)

Figure 1: Diamond snake graph $\gamma_{\beta}(D_3) = 5$

REFERENCES