An audit of cardio protective natural products

¹Vignesh M, ²Rajesh M S

¹M Pharm, ²Assistant Professor ¹Department of Pharmacology ¹Government College of Pharmacy, Bengaluru, India

ABSTRACT:

Cardiovascular Diseases (CVDs) accounts for approximately 30% of overall death worldwide. There are various CVDs among which Myocardial Infarction (MI) and stroke are found to be the major contributor to mortality. Adrenaline and isoprenaline are the catecholamines used in various cardiovascular interventions. However, toxic doses cause stress on the myocardium causing necrosis in the cardiac muscles. It is discovered that pathophysiological and morphological alterations observed in these catecholamines overdose are similar to changes in MI in humans. Hence, they are considered as reliable model to investigate protective effect in case of heart attack. Doxorubicin belongs to the class of anthracycline antibiotic, which is most widely used in the treatment of range of cancers such as leukemias, lymphomas, sarcomas, solid tumors etc. Despite its widespread use it produces dose dependent selective cardiotoxicity via the formation of reactive oxygen species (ROS). Dexrazoxane is the only approved drug by USFDA to alleviate DOX induced cardiotoxicity, the drawback is that it interferes with the clinical activity of DOX. Paradoxically, researchers investigated the potential of phytochemicals such as Curcuma longa, Allium sativum, Coleus forskohlii, Syzygium aromaticum, Crocus sativus etc. against drugs induced cardiotoxicity. Unlike synthetic drugs, phytochemicals from natural products are safe for long term use. The present article reviews possible mechanisms of inducing agents, changes in parameters and cardioprotective effects of various plant species against drugs induced cardiotoxicity.

KEYWORDS: Cardiovascular Diseases, Myocardial Infarction, Catecholamine, Cardio protective, Evaluation Parameters, Natural Products, Anthracyclines

CONTENTS

- 1. Introduction
- 2. Mechanism of cardiotoxicity
- 3. Evaluation parameters
 - a. Serum parameters
 - b. Biochemical parameters
 - c. Immunohistochemistry
- 4. Cardioprotective activities of Plant species
- 5. Conclusion
- 6. References

1. INTRODUCTION

Cardiovascular disease (CVD) is a series of disorders affecting the heart and blood vessels, including peripheral arterial disease, coronary heart disease (CHD) and congestive heart failure (CHF) etc¹. Currently, CVD accounts for ~30% of death worldwide, including nearly 40% in high-income countries and about 28% in low- and middle-income countries².

Myocardial infarction (MI) is described as the loss of myocardial cells as a result of a mismatch between oxygen demand and supply in the heart³. Isoprenaline is a synthetic sympathomimetic nonselective β -adrenergic agonist. It is mainly used in the treatment of bradycardia, thioridazine-induced torsade de pointes, and heart block⁴. However, toxic dosescause severe stress on the myocardium causing infract-like necrosis of the heart muscle. It is well established that pathophysiological and morphological alterations observed in ISO-induced cardiac dysfunctions in animal experiments are similar to the changes in humans MI⁵.

Adrenaline(**Adr**)affects the heart in both inotropic and chronotropic ways. Excess catecholamine has been shown to cause coronary vasoconstriction, which causes an increase in the demand for oxygen by heart cells and a decrease in myocardial blood flow, resulting in acute cardiotoxicity. Adr-stimulated cardiotoxicity is mediated by an increase in free radical production and a decrease in heart anti-oxidants, resulting in oxidative stress and as a result, cardiac tissue necrosis or death³.

Doxorubicin (**DOX**) is a cytotoxic anthracycline antibiotic that is used to treat a variety of cancers, including solid tumors, soft tissue sarcomas, and hematological malignancies⁶. However, due to the risk of dose-dependent cardiotoxicity, which can result in irreversible cardiomyopathy and congestive heart failure, clinical use of this medicine has been limited⁷. The principal anticancer mechanism of DOX is through DNA chelation, which further inhibits the progression of topoisomerase II and then produces free radicals to kill cancer cells. However, this effect is not selective for cancer cells alone as healthy normal cells can also be affected by the same mechanism⁶.

The formation of reactive oxygen species (ROS) by doxorubicin during its intracellular metabolism causes cardiotoxicity. ROS causes oxidative damage to essential cellular components and membranes by causing lipid peroxidation, which results in permanent myofibril loss, sarcoplasmic reticulum dilation, cytoplasmic vacuolization, and mitochondrial swelling⁸.

Induction of free radicals and other toxic nonradicals released from cells by catecholamines and anthracyclines can be neutralized by generating endogenous antioxidants or by introducing exogenous antioxidants in nutritional supplements. These interventions may prevent or ameliorate the toxic effects of drugs⁶.

Medicinal plants, plants-based foods and their constituents have received great attention for their salutary effects and potential to treat many aspects of ischemic heart disease or MI. Similarly, the use of herbs in pharmacotherapy is on the rise, owing to a growing understanding that herbal products can affect the course of cardiac disease and can give an integrated approach of nutritious elements that aid in the restoration and maintenance of balanced bodily systems⁹.

2. MECHANISM OF CARDIOTOXICITY

2.1 DOXORUBICIN

A) Mitochondrial dependent reactive oxygen species

One of the subcellular organelle modifications after doxorubicin-induced cardiotoxicity is mitochondrial abnormalities in cardiomyocytes. The mitochondria produce 90 percent of the ATP used by cardiomyocytes. Cardiolipin, a component of the inner mitochondrial membrane, plays a critical role in the progression of doxorubicin-induced pathologies. Cardiolipin and doxorubicin have a mutual attraction because cardiolipin has an anionic charge and doxorubicin has a cationic charge. Doxorubicin and cardiolipin form an irreversible combination as a result¹⁰.

Cardiolipin is required for the activation of electron transport chain enzymes including cytochrome C oxidase, NADH cytochrome C oxidoreductase, and others. Cardiolipin is unavailable for activating the above-mentioned enzymes, which are key components of the electron transport chain's complex II and complex IV because it is already bound to doxorubicin¹¹.

B) Role of Iron regulatory protein in the production of reactive oxygen species¹²

Fe3+ (ferric iron) interacts with the ketone and hydroxy group of doxorubicin to create doxorubicin-Fe2+ free radical complexes in a non-enzymatic process. Doxorubicin raises the intracellular iron pool, which is implicated in the production of free radicals in normal circumstances.

C) Role of Nitric Oxide in the production of reactive oxygen species¹³

Nitric oxide is found in higher quantities in the diseased heart. During doxorubicin treatment, the level of iNOS, as well as the amount of NO, increases in cardiac cells. The production of superoxide anions by activated NOXs combines with NO during doxorubicin therapy, resulting in the synthesis of peroxynitrite via lipid peroxidation. Peroxynitrite oxide production causes mitochondrial oxidative stress, apoptosis, and necrosis.

D) Role of nrf2 in oxidative stress 14

The basic leucine zipper protein nuclear factor erythroid 2-related factor 2 (Nrf2) is involved in the regulation of the expression of a variety of antioxidant proteins. In doxorubicin-induced cardiomyopathy, Nrf2 is also important. Cardiotoxicity and cardiac function are worsened by Nrf2 deficiency.

2.2 ISOPRENALINE (ISP)⁴

ISP, a synthetic catecholamine causes toxicological alterations in heart tissue by producing oxidative stress, which causes antioxidant enzymes to be depleted. ISP also reduces oxygen delivery, which leads to myocardial hypoxia and necrosis. Cellular permeability is increased as a result of increased lipid peroxidation, which leads to ventricular hypertrophy. When phospholipase is activated, it immediately produces inflammation and ST segment elevation, resulting in acute heart damage and myocardial ischemia.

NF-κB and mitogen activated protein kinases (MAPKs) like p38, as well as other signalling pathways, are activated, accelerating cellular death. All of these processes, when coupled, form the hallmarks of ISP-induced toxicity, which, if left untreated, can lead

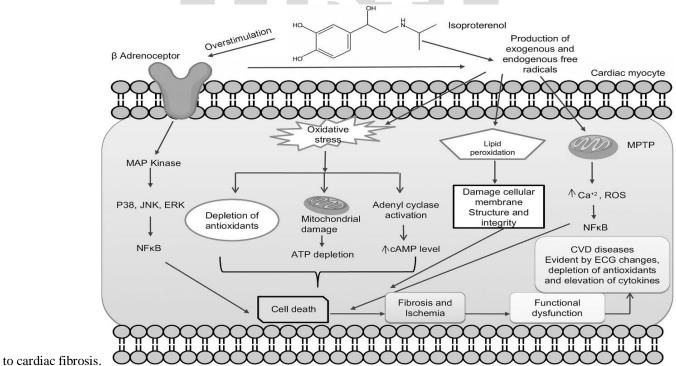


Fig 1: Fig 1 represents the molecular mechanism of Isoprenaline induced cardiotoxicity and the central role of oxidative stress in producing cell death.

Abbreviations: MAP: Mitogen Activated Protein, JNK: Janus Kinase, ERK: Extracellular Regulated Kinase, NFκB: Nuclear Factor Kappa B, MPTP: 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, cAMP: cyclic Adenosine Mono Phosphate, ATP: Adenosine Tri Phosphate, Ca ²⁺: Calcium, ROS: Reactive Oxygen Species

2.3 ADRENALINE¹⁵

Catecholamines such as epinephrine and norepinephrine function as neurotransmitters. These catecholamines are released in response to stressful events. Catecholamines have a favourable effect on the cardiovascular system and the body's total energy requirement at first. Long-term elevations of catecholamines in the circulation, on the other hand, might have negative consequences, particularly for the heart.

Relative hypoxia, hemodynamic changes, coronary insufficiency, metabolic changes (lipid and energy balance), electrolyte changes, membrane permeability changes, and intracellular Ca^{2+} overload are all thought to play a role in catecholamine-induced cardiotoxicity. Cardiotoxicity is thought to be caused by oxidative stress (e.g. free radical processes) and oxidative catecholamine metabolites (e.g. aminochromes)

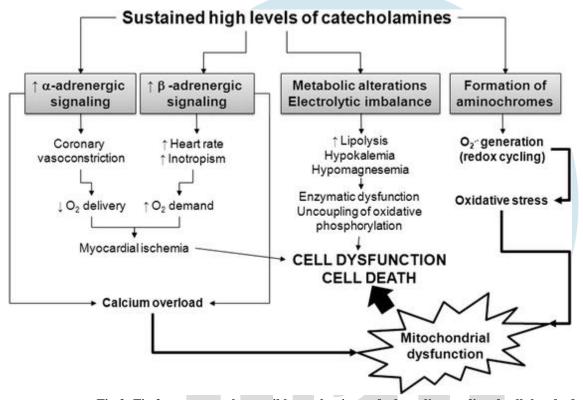


Fig 2: Fig 2 represents the possible mechanisms of adrenaline mediated cellular dysfunction

3. EVALUATION PARAMETERS

Table 1

3.1 Serum Parameters

Blood samples are collected from the retro-orbital vein of rats using a glass capillary tube. The blood samples were let to coagulate and then they were centrifuged, serum is separated and following parameters are estimated.

SL	PARAMETER	ABBREVATION	DESCRIPTION		
NO					
1	Cardiac Troponin I	CTnI	Cardiac regulatory proteins that control the calcium-mediated interaction between actin and myosin		
2	CardiacTroponin T	CTnT	Cardiac regulatory proteins that control the calcium mediated interaction between actin and myosin		
3	Creatine phosphokinase-MB	CK-MB	Catalyzes the phosphorylation of creatine which is a high energy compound for muscle contraction		
4	Lactate dehydrogenase	LDH	Enzyme catalyzes of pyruvate to lactate (glycolysis), which plays an important role in cellular respiration		
5	Aspartate aminotransferase	AST	Amine group transfer catalysis between glutamate to aspartate		
6	Alanine aminotransferase	ALT	Amine group transfer catalysis between glutamate to alanine		
7	Alkaline Phosphatase	ALP	Catalyzes the breakdown of phosphate from the complex		
8	High density lipoprotein	HDL	Good cholesterol-absorbs cholesterol and carries it back to the liver		

9	Low density	LDL	Transport cholesterol from its site of synthesis in the liver to	
	lipoprotein		the various tissues and body cells	
10	Very low density	VLDL	It is made in the liver and is responsible for delivering	
	lipoprotein		triglycerides to cells	
11	Interleukin-1 beta	IL-1β	Cytokine required for activating the innate immune response	
12	Metalloproteinase-9	MMP-9	Degrades extracellular matrix (ECM) proteins and activates	
	P	-	cytokines and chemokines to regulate tissue remodeling	
13	Vascular Endothelial	VEGF	Key regulator of physiological angiogenesis during	
13	Growth Factor	V LOI	embryogenesis, skeletal growth, and reproductive functions.	
14	Interleukin-6	IL-6	Pro-inflammatory cytokine that induces final maturation of B-	
14	Interreukin-o	IL-0	cells	
1.5	Interlandin 10	IL-10		
15	Interleukin-10	IL-10	Anti-inflammatory cytokine that plays a role in inhibiting the	
			host immune response to pathogens	
16	Angiotensin-	ACE	Blood pressure regulating enzyme by converting angiotensin-1	
	Converting Enzyme		to angiotensin-2	
17	High sensitive C	HsCRP	Protein made in the liver, sent to bloodstream in response to	
	reactive protein		inflammation	
18	Creatine kinase	CK	Catalyzes the phosphorylation of creatine which is a high	
			energy compound for muscle contraction	
19	Total cholesterol	TC	Type of lipid comprising the amount of HDL, LDL, and TG in	
1.7	Total cholesterol	10	blood	
20	Myoglobin	MYO		
20	Myoglobin	MYO	Protein found in striated muscles (skeletal muscle and heart	
	T. 6 :	TOTAL CA	muscle). Higher levels in serum indicate severe muscle injury	
21	Trasforming growth	TGF-β1	Cytokine that plays an important role in angiogenesis,	
	factor-β1		immunoregulation, etc. It also exerts powerful anti-	
			inflammatory function	
22	8-hydroxyguanosine	8-OHdG	Oxidative derivative of guanosine which is used as a	
	, ,,,		biomarker of oxidative stress causing RNA damage	
23	Quinone reductase	QR	The intracellular cytosolic enzyme which catalyzes the	
	Quinone reductus	Q.	reduction of quinones	
24	Nuclear factor	Nrf-2	Controls the expression of genes whose protein products are	
24	erythroid related factor-	1411-2	involved in detoxification and elimination of ROS	
	-		involved in detoxification and elimination of ROS	
25	2	IIO 1	NO 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
25	Heme Oxygenase-1	HO-1	Nrf2 regulated gene that plays a critical role in the prevention	
			of vascular inflammation.	
26	Atrial Natriuretic	ANP	Peptide hormone secreted from cardiac atria functions to	
	Peptide		lower BP and electrolyte homeostasis	
27	Brain Natriuretic	BNP	Hormone of cardiac origin that plays an important role in	
	Peptide		regulating intravascular blood volume and vascular tone	
28	β-Myosin Heavy Chain	β-МНС	Actin based motor protein expressed primarily in the heart. It	
			plays a major role in cardiac muscle contraction	
29	Procollagen type I N-	P1NP	Formed in fibroblasts and converted to collagen by peptidases,	
29		1 1111	most commonly found in mineralized bone	
20	terminal propeptide	DAND		
30	Procollagen type III N-	P3NP	It is an extension peptide that is cleaved and liberated into	
	terminal propeptide		extracellular fluid and is a serum biomarker of collagen	
			turnover	
31	α-LIPOIC ACID	ALA	Anti-oxidant made by the body also plays a role in converting	
			glucose to energy	
32	Ascorbic acid	VIT C	Water-soluble vitamin required for tissue repair, collagen	
			formation, and enzymatic production of certain	
			neurotransmitters	
33	Alpha-Hydroxybutyric	α-HBDH	High energy compound that provides energy when not enough	
55	Dehydrogenase	∾ IIDDII	carbohydrates have been taken. It is also a diagnostic	
	Denydrogenase			
2.4	District No.	DIDI	biomarker in insulin resistance	
34	Blood Urea Nitrogen	BUN	Product produced by protein metabolism and found	
			abundantly in urine	
35	Uric acid	UA	Metabolic breakdown product of purine nucleotides	
36	Creatinine	Cr	Waste product that comes from the wear and tear on muscles	
			of the body	
37	Tocopherol	VIT E	Fat-soluble vitamin functions as an antioxidant	
38	BCL2 Associated X	Bax	The protein forms a heterodimer with BCL2 and functions as	
	protein		an apoptotic activator	
	1.1 ***		1 · F · · · · · · · · · · · · · · · · ·	

39	B-cell lymphoma 2	Bcl2	Regulatory protein that regulate apoptotic cell death by either inhibiting anti-apoptotic or inducing pro-apoptotic proteins
40	Total trialyzanidas	TG	
40	Total triglycerides	10	Type of fat found in blood and also stored in fat cells, high
			levels may be an indication of cardiovascular disease
41	Total protein	TP	Total amount of protein in serum, it is often elevated in
			pathologic conditions like infection, inflammation, etc

Table 2

3.2 Biochemical Parameter

The heart was removed from each animal and its fresh weight was recorded. The isolated hearts were kept at -80 °C and subsequently homogenized in cold potassium phosphate buffer (0.05 M, pH 7.4). The homogenates were centrifuged at 5000 rpm for 10min at 4° C.

1	Glutathione S	GST	Catalyze the conjugation of the reduced form of glutathione to		
	Transferase		xenobiotic substrate for detoxification		
2	Glutathione disulfide	GSSG	Derived from 2 glutathione molecules, it is reduced to GSH functioning as an antioxidant system		
3	Glutathione reductase	GR	Enzyme responsible for maintaining the supply of reduced glutathione		
4	Peroxidase	POD	Group of enzymes that catalyze the oxidation of substrate		
5	γ-Glutamyl	γ-GT	Catalyzes the removal of glutamyl groups of aromatic amines		
ļ	transpeptidase		into its constituent amino acids		
6	Glutathione peroxidase	GPx	Cytosolic enzyme that catalyzes the reduction of hydrogen		
			peroxide to water and oxygen		
7	Sodium-potassium Adenosine	Na ⁺ K ⁺ ATPase	Membrane bound enzyme helps maintain resting potential, affects transport, and regulates cellular volume		
	Triphosphatase	3.5.21 APP			
8	Magnesium Adenosine	Mg ²⁺ ATPase	Transmembrane enzyme, responsible for sequestration of		
ļ	Triphosphatase		calcium in the lumen of sarcoplasmic reticulum in muscle		
		2.	against a considerable concentration gradient		
9	Calcium Adenosine Triphosphatase	Ca ²⁺ ATPase	Enzyme that transfers calcium after a muscle has contracted		
10	Reduced Glutathione	GSH	Key component of the antioxidant system helps protect the body from free radicals		
11	Malondialdehyde	MDA	One of the final products of PUFA peroxidation in the cells. An increase in free radicals causes overproduction of MDA		
12	Superoxide dismutase	SOD	Enzyme catalysis of dismutation of superoxide radical into		
10	G . 1	CAT	oxygen and hydrogen peroxide		
13	Catalase	CAT	Enzyme responsible for the breakdown of hydrogen peroxide into oxygen and water		
14	Tumor Necrosis Factor-	TNF-α	Proinflammatory cytokine that plays a critical role in cell		
ļ	alpha		proliferation, differentiation, and apoptosis		
15	nitric oxide	NO	it is a Free radical, that functions to increase blood flow and lower BP		
16	Monocyte	MCP 1	Chemokine that regulates migration and infiltration of		
	chemoattractant		monocytes /macrophages. It is highly expressed in		
ļ	protein-1		atherosclerotic plaques		
17	Galectin 3	Gal-3	It is an inflammatory β-galactoside binding lectin secreted by		
ļ			activated macrophages that when bound to the matrix, exerts		
ļ			matricellular functions		
18	Collagen 1	COL1A1	Most abundant protein that forms a structural and mechanical scaffold		
19	Myeloperoxidase	MPO	Heme containing enzyme expressed mainly in neutrophils,		
	J r		monocytes, etc. Catalyzes the formation of ROS for		
ļ			antimicrobial property		
20	Calcium	Ca ²⁺	Important role in blood clotting, contraction, heart rhythm,		
ļ		•	nerve functions,etc		
21	Potassium	K^+	Helps maintain normal levels of fluid inside our cells, also		
ļ			helps muscles to contract, and maintains BP		
22	Magnesium	Mg^{2+}	Supports muscle and nerve function, chronically low levels can increase the risk of high BP, heart disease, type 2 DM,		
ļ			osteoporosis		
23	Sodium	Na ⁺	BP and blood volume homeostasis, also for conducting nerve		

	i	npulses, contracting and relaxing muscles

Table 3

3.3 Immunohistochemistry

Four mm thick sections were deparaffinized, rehydrated, and endogenous peroxidase activity was blocked with H_2O_2 in methanol. Sections were pre-treated in citrate buffer (pH 6.0). Sections were incubated at room temperature with rabbit polyclonal antibodies specific to the rat targets. Sections were incubated with biotinylated goat anti-polyvalent, then with streptavidin peroxidase and finally with diaminobenzidine plus chromogen. Slides were counterstained with hematoxylin, visualized under a light microscope and the extent of cell immunopositivity was assessed by using a semi-quantitative analysis.

1	Inducible nitric oxide	iNOS	Mediator of unspecific host defense inhibits t-cell activity	
	synthase			
2	Nuclear factor kappa B	NF-Kb	Protein transcription factor considered as a regulator of innate	
			immunity	
3	Caspase-3	CPP-32	Frequently activated death protease, catalyzing the specific	
			cleavage of many key cellular proteins mediating apoptosis	

4. CARDIOPROTECTIVE ACTIVITIES OF PLANT SPECIES AGAINST DRUGS INDUCED CARDIOTOXICITY Table 4

Description of experimental studies performedshowing cardioprotective effects and outcomes which are arranged in chronological order (2010 – Feb 2022)

SL	AUTHOR NAME	PLANT NAME	MODEL	EVALUATION	OUTCOMES AND
NO			USED	PARAMETERS	CONCLUSION
1	Mohammad	Punica granatum	Doxorubicin	CK-MB, LDH, AST,	WFEP has the ability to
	HassanpourFard et al.,			SOD, GSH, MDA,	reduce oxidative stress and
	2010^{16}	Whole fruit extract of		and ECG	significantly decreased QT
		Pomegranate (WFEP)			interval, no ST-segment
					changes, and increased heart
					rate
2	Patel et al., 2010 ¹⁷	Syzygium cumini	Doxorubicin	CK, LDH, AST, ALT,	The extract significantly
				GSH, GST, GPx,	reversed pathological
		(Hydroalcoholic seed		CAT, SOD, GR, HDL,	alterations caused by DOX
		extract)		LDL and TG	through its antioxidant effect.
3	Ahmed A. Elberry et	Vaccinium	Doxorubicin	cTnI, CK-MB, CK,	CRAN protects against
	al., 2010 ¹⁸	macrocarpon		LDH, GSH, GSSG,	DOX-induced cardiotoxicity
				COX-2, MDA, CAT,	in rats as evidenced by
		(Cranberry extract-		SOD, GPx and GR	improved mortality and
		CRAN)			effusion scores, mitigation of
					ECG abnormalities
4	Ponniah Senthil	Acalypha indica	Isoprenaline	cTnT, CK-MB, LDH,	Methanolic extract possesses
	Murugan et al., 2011 ¹⁹			HsCRP, MDA, CAT,	potent cardioprotective
	_	(Methanolic extract)		and SOD	activity, further studies are
					needed to identify the active
					compounds.
5	L. Vibha et al., 2011 ²⁰	Allium sativum	Isoprenaline	CK-MB, LDH, SOD,	Medicinal ginger possesses
				CAT, and MDA	cardioprotective activity
		(Paste suspension in			against ISO induced
		distilled water)			myocardial necrosis, further
					studies need to be conducted
					to evaluate the active
					principle.
6	Sita Sharan Patel et	Bombax ceiba	Doxorubicin	LDH, ALT, MDA, TP,	BC showed cardioprotective
	al., 2011 ²¹			GSH, GPx, SOD and	effect against DOX-induced
		(Aqueous flower		CAT	MI and it may be due to its
		extract)			antioxidant effect.
7	Shreesh Ojha et al.,	Emblica officinalis	Isoprenaline	CK-MB, LDH, MDA,	Extract improves
	2011 ²²			SOD, CAT, GSH,	biochemical defense and
		(Hydroalcoholic		GPx, systolic arterial	contractile function along
		extract)		pressure, diastolic	with histopathological
				arterial pressure, mean	salvage of the myocardium
				arterial pressure, and	and delays the progression of
				heart rate	myocardial ischemia.
8	Shreesh Ojha et al.,	Commiphoramukul	Isoprenaline	CK-MB, LDH, MDA,	Protective effects of extract
	2011^{23}			SOD, CAT, GSH and	against ISO-induced MI are
		(Hydroalcoholic		GPx	related to its effects on

		extract of guggul)			counteraction of free radicals and membrane-stabilizing action.
9	T.Vijay et al., 2011 ²⁴	Gmelina arborea (Ethanolic extract)	Doxorubicin	CK, ALT, AST, LDH, LDL, HDL, VLDL, LDH, GSH, GPx, MDA, CAT, GR and SOD	The identification of molecules with cardioprotective potential from this ethanol extract of GA may provide new directions for the identification of cardioprotectives
10	Upaganlawar A et al., 2011 ²⁵	Lagenaria siceraria (Semi-ripe fruit juice)	Isoprenaline	LDH	Fruit juice showed protective effect on ISO-induced MI, effects might be due to the presence of polyphenolic
11	Roya Mehdizadeh et al., 2012 ²⁶	Crocus sativus (Saffron aqueous extract)	Isoprenaline	CK-MB, CK, LDH, and MDA	compounds. Pretreatment with saffron and safranal reduced histopathological changes in heart tissue and decreased CK-MB and LDH activities in serum via reduction of oxidative stress.
12	S. Madhumitha et al., 2012 ²⁷	Morus alba (Methanolic leaf extract)	Isoprenaline	CK, LDH, SOD, CAT, GSH, GPx and MDA	The extract is effective in reducing the extent of myocardial damage and significantly counteracted the oxidative stress
13	Sarah Len O. Rosales et al., 2013 ²⁸	Bambusablumeana (Ethanolic leaf crude extract)	Isoprenaline	CK-MB, LDH, and AST	Leaf extract exerts dose dependent cardioprotective action by slackening inflammation and cardiac biomarkers
14	Bandari Uma Mahesh et al., 2013 ²⁹	Boswellia ovalifoliolata (Ethanolic stem-bark extract)	Doxorubicin	CK-MB, LDH, AST, ALT, CAT, SOD, MDA, GSH, ROS, and ECG	Ethanolic extracts of BO hhavea significant therapeutic benefit when administered along with DOX therapy by attenuating oxidative stress and lipid peroxidation.
15	Amr A. Fouad et al., 2013 ³⁰	Cannabis sativa (Cannabidiol)	Doxorubicin	TNF-α, NF-kB, iNOS, NO, CPP-32, Ca ²⁺ ,Selenium, Zinc,and GSH	Cannabidiol treatment significantly ameliorated DOX-induced cardiotoxicity due to its potent antioxidant and anti-inflammatory effect.
16	Herwandhani Putri et al., 2013 ³¹	Citrus hystrix peel Ethanolic extract- ChEE)	Doxorubicin	AST and ALT	ChEE could reside most parts of its free radical scavenger activity and it can be used clinically to improve the therapeutic benefits of DOX
17	Razieh Afshar Moghaddam et al., 2013 ³²	Camellia sinensis (Ethanolic extract of leaves)	Isoprenaline	LDH, ALT, GSH, MDA, SOD, and CAT	Extract showed dose dependent cardioprotection with significant changes in the myocardial muscle fibers and inflammatory cells.
18	S. Palani et al., 2013 ³³	Flacourtia indica (Ethanolic leaf extract)	Doxorubicin	CK, LDH, LDL, AST, ALT, HDL, VLDL, SOD, MDA, CAT, GSH and GPx	Ethanolic extract possesses marked cardioprotective activity demonstrated by changes in the serum marker enzyme. Further studies will be carried out to find the compound that is responsible for activity.

19	V.dhanarangeshkumar et al., 2013 ³⁴	Garcinia indica (Ethanolic fruit extract)	Isoprenaline	CK-MB, CK, LDH, AST, ALT, Na ⁺ K ⁺ ATPase, Mg ²⁺ ATPase and Ca ²⁺ ATPase	Pre-treatment with extract providescardioprotection by inhibiting the formation of free radicals and also improved the status of enzymatic antioxidants
20	MahsaZareiet al., 2013 ³⁵	Hemidesmus indicus (Methanolic root extract-HiRe)	Doxorubicin	CK, LDH, AST, ALT, SOD, CAT, GPx, GSH and MDA	HiRe can be considered as a good chemo protector against Dox-induced cardiotoxicity by boosting the antioxidant capacity of the heart. So, this will become a ray of hope for cancer patients.
21	Sudeep Shah et al., 2013 ³⁶	Hypericum hircinum	Doxorubicin	CK, LDH, ALT, GSH, MDA, SOD and ECG	Plant extract has the potential to prevent the cardiotoxic effects induced by DOX.
22	Adi K at al., 2013 ³⁷	Parkia biglobosa (Hydroalcoholic stem bark extract)	Isoprenaline	CK, LDH, LDL, HDL, VLDL, TC, TG and MDA	Extract ameliorated positively biochemical alterations, prevented oxidative stress and histological and morphological changes induced by ISO may be due to its antioxidant and antihyperlipidemic activities
23	Mukesh Nandave et al., 2013 ³⁸	Picrorhizakurroa (Methanolic root extract)	Isoprenaline	CK-MB, LDH, SOD, CAT, GSH, GPx, and MDA	The study demonstrates the cardioprotective effect of extract against ISO induced MI and validates the traditional claim. Further studies need to be done for its clinical use in IHD
24	Nishith Ranjan Barman et al., 2013 ³⁹	Urtica parviflora (Ethanolic extract)	Isoprenaline	ALT, AST, ALP, LDL, HDL, TG, TC, CAT and GSH	U. parviflora prevented the ISO-induced cardiotoxicity by boosting the endogenous antioxidant activity. It could be due to the antioxidant activity and restoration of myocardial biomarkers.
25	Sunanda Panda et al., 2013 ⁴⁰	Vinca rosea (vincristine)	Isoprenaline	cTnT, CK-MB, AST, LDH, Na ⁺ K ⁺ ATPase, Mg ²⁺ ATPase, Ca ²⁺ ATPase and ECG	Treatment with vincristine at moderate dose provides cardioprotection, through the enhancement of antioxidant defense mechanism.
26	V. PAVLOVA et al., 2014 ⁴¹	Aronia melanocarpa (Black chokeberry)	Doxorubicin	GSH	Aronia melanocarpa total extract had ameliorating effect on DOX-induced cardiotoxicity via mechanisms related to the reduction of cellular oxidative stress.
27	Yuan Cao et al., 2014 ⁴²	Astragalus membranaceus	Doxorubicin	ECG, TUNEL, DNA laddering, and Western blotting	APS suppressed oxidative stress and apoptosis, ameliorating doxorubicinmediated cardiotoxicity by regulating the PI3k/Akt and p38MAPK pathways.
28	Ahmed A. Zaki et al., 2014 ⁴³	Boswellia carteri (Olibanum methanol extract)	Isoprenaline	CK-MB, ALT, LDH and MDA	Methanolic extract exhibited a cardioprotective effect, particularly on administering high doses, determined both biochemically and histopathologically

29	Masood S. Khan et al., 2014 ⁴⁴	Bombyx mori (Aqueous extract)	Doxorubicin	CK-MB, LDH, MDA, CPP-32, TNF-α, IL-6, and SOD	Aqueous extract of BM has cardioprotective potential, this may be due to high content of amino acids and flavonoids
30	B. Santhosh Kumar et al., 2014 ⁴⁵	Buchananiaaxillaris (Ethanolic leaves extract)	Doxorubicin	CK, LDH, and AST	Ethanolic leaf extract attenuated the DOX-induced cardiotoxicity further experimental studies are needed to isolate the active/lead biomolecules.
31	Farogh Ahsan et al., 2014 ⁴⁶	Coleus forskohlii (Ethanolic root extract)	Isoprenaline	cTnI, CK-MB, CK, LDH, AST, and ALT	Ethanolic extract attenuates ISO-induced MI. The cardioprotective activity is probably related to its ability to strengthen the myocardial membrane by its membrane stabilizing action
32	Abdullah S. Shatoor et al., 2014 ⁴⁷	Crataegus aronia (Aqueous extract)	Doxorubicin	CK-MB, LDH, GSH, GPx, GR, SOD, MDA and CAT	Aqueous extract following DOX treatment ameliorated damage to cardiac tissue by modulating the pathways that trigger cardiotoxicity. Additional animal and human trials are needed to confirm the active ingredient
33	Abi Beaulah G et al., 2014 ⁴⁸	Croton sparciflorus (Methanolic extract)	Isoprenaline	CK-MB, LDH, AST, ALT, TC, TG, HDL, LDL, SOD, CAT and MDA	The plant extract has the potential to inhibit the the inhibit the ardiotoxicic effects induced by ISO and possesses a significant medicinal value in the prophylactic treatment of MI
34	K.Sobhana et al., 2014 ⁴⁹	Pandanus odoratissimus (Hydroalcoholic leaves extract)	Isoprenaline	CK-MB, LDH, CAT, SOD, GSH, and MDA	Hydroalcoholic extract showed significant dose dependent cardioprotective activity; flavonoids may be responsible for this effect
35	Hardik Savsani et al., 2014 ⁵⁰	Premna mucronate (Methanolic extract)	Isoprenaline	CK-MB, LDH, α- HBDH, Na ⁺ K ⁺ ATPase, Mg ²⁺ ATPase, Ca ²⁺ ATPase, Na ⁺ , K ⁺ , Ca ²⁺ , Mg ²⁺ , MDA, GSH, SOD, CAT and ECG	Methanolic extract showed dose dependent cardioprotection against ISO induced MI by altering changes in ions, normalized ECG pattern, and hemodynamic changes.
36	Kyu Hee Lim et al., 2014 ⁵¹	Panax ginseng	Isoprenaline	CK-MB, LDH, SOD, CAT, GSH, MDA, GPx and ECG	Pretreatment with ginseng significantly reduced serum biomarkers, inhibiting neutrophil infiltration in the myocardium, this effect may be due to its antioxidant effect.
37	Heba A. Aniss et al., 2014 ⁵²	Salsola kali (Aqueous extract)	Doxorubicin	CK, LDH, AST, ALT, MDA, NO, GSH, GPx, MDA, GST and CAT	S. kali aqueous extract had a potential antioxidant activity which ameliorated ADR-induced cardiotoxicity
38	Jay Rabadia et al., 2014 ⁵³	Syzygium Aromaticum (Methanolic flower extract)	Isoprenaline	CK-MB, CK, LDH, AST, ALT, GSH, GST, GPx, MDA, CAT and SOD	S.aromaticum modulated most of the biochemical analysis and tissue enzyme analysis Further isolation, characterization, and

					purification of the active
					constituentsares required.
39	Ganesh Chandra	Aegle Marmelos	Doxorubicin	CK-MB, LDH, AST,	AME has been reported to
	Jagetia et al., 2015 ⁵⁴			ALT, GSH, MDA, CAT, GPx and ECG	stabilize cardiac cell membranes and preserve
				CA1, GFX and ECG	their integrity by regulating
					cardiac enzyme release
40	A. Gnanapragasam et	Centella asiatica	Doxorubicin	CK, LDH, ALT, GPT,	Extract enhances myocardial
	al, 2015 ⁵⁵	(Aqueous extract)		SOD, CAT, GPx and GST	antioxidants and significantly prevents the heart fromDOX-
		(Aqueous extract)		USI	inducedd oxidative stress.
					Further studies are in
					progress to elucidate the
41	Abba	Hibiscus sabdariffa	Doxorubicin	CK-MB, LDH, AST,	exact mechanism. Aqueous extract of H.
'1	PacômeObouayeba et	Thoisens subuarijja	Doxorubiem	and ALT	sabdariffa red petals helps to
	al., 2015 ⁵⁶	(Aqueous flower			protect the heart, and the
12	Hani Valu et al	extract)	Tanananalina	ACT ALT ALD	reduction of inflammation Leaf extract showed dose
42	Honi Yalu et al., 2015 ⁵⁷	Kigelia Africana	Isoprenaline	AST, ALT, ALP, LDH, TC, TG, LDL,	dependent cardioprotection,
	2010	(Methanolic leaves		HDL, MDA, GSH,	prevented alterations in
		extract)		CAT and SOD	biomarkers, and showed
					normal myofibrillar structures
43	Zhao-Hua Geng et al.,	Salvia miltiorrhiza	Isoprenaline	CK-MB, LDH, AST,	SMP was safe and highly
	2015 ⁵⁸			ALT, ALP, LDL,	effective in preventing the
		(Polysaccharide- SMP)		HDL, SOD, CAT, GSH, GPx and MDA	ISO-induced MI in rats, which was at least by virtue
		SWIF)		USII, UF X and WIDA	of its antioxidant and
					antihyperlipidemic activities
44	Babatunji Emmanuel	Sesamum indicum	Cadmium	AST, ALT, ALP, TC,	SI possesses antioxidant and
	Oyinloye et al., 2015 ⁵⁹	(Aqueous extract-SI)		TG, LDL, HDL, GSH, GST, GPx, SOD, CAT	cardioprotective potential in a dose-dependent manner. SI
		(riqueous extract 51)		and MDA	has potential in the novel
					treatment of cardiotoxicity
					and management of oxidative stress
45	Santosh K Shukla et	Terminalia arjuna	Isoprenaline	cTnI, CK-MB, LDH,	HETA pretreatment exerts
	al., 2015 ⁶⁰			ALT, GSH, SOD, and	better antioxidant and anti-
		(Hydroalcoholic bark		MDA	apoptotic which further strengthens the
		extract-HETA)			cardioprotective activity
46	Geeta B. Kharadi et	Allium cepa	Isoprenaline	cTnI, CK-MB, AST,	A. cepa at low dose was
	al., 2016 ⁶¹			LDH, SOD, MDA,	found to be cardioprotective
		(Aqueous extract)		and ECG	against myocardial injury while at high dose did not
					show a significant effect. So,
					we presume that it might be
					effective within a certain
47	Mona A. M. Ghoneim	Adansonia digitata	Isoprenaline	CK-MB, LDH, AST,	dose range only A. digitata exerts significant
	et al., 2016 ⁶²			MCP-1, MPO, IL-1β,	cardioprotective effects
		(Total protein		GSH, GPx, Ca ²⁺ , K ⁺ ,	against ISO-induced MI. This
		extract)		Mg ²⁺ , COL1A1, Gal- 3, and serum	protective effect could be due to antioxidant defense system
				corticosterone	of GSH, and GPx.
48	R. Varadharajan et al.,	Cucumis callosus	Doxorubicin	AST, ALT, ALP, TC,	Extract prevented the DOX-
	2016 ⁶³	(Ethanolic extract)		TG, MDA, GSH, GPx, GST, SOD and CAT	induced myocardial toxicity by boosting the endogenous
		(Eulanone extract)		351, 50D and CAI	antioxidant activity. The
					effect might also be due to
49	Sadiya khwaia at al	Cynamus naturalics	Isoprenaline	CK MB IDU AIT	the lipid-lowering effect Extract showed significant
47	Sadiya khwaja et al.,	Cyperus rotundus	rsoprenanne	CK-MB, LDH, ALT,	Lanaci showed significant

	2016 ⁶⁴	T		and ACT	dana danan dana
	2016	(Ethanolic extract)		and AST	dose dependent cardioprotection and it is
					attributed to the presence of flavonoids
50	Jaganathan Anitha et	Eudriluseugeniae	Isoprenaline	LDH, HDL, VLDL,	EWP treatment group tends
	al., 2016 ⁶⁵		1	LDL, TG and TC	to ameliorate the changes
		(Earthworm powder-			mediated by ISO without any
		EWP)			adverse side effects. The isolation of the pure
					compound responsible for
					these stabilizing properties is
7.1	D 'M I	G 1	T 1'	CIV MD. ACT. ALT.	now in progress.
51	Ravi Mundugaru et al., 2016 ⁶⁶	Garcinia pedunculata	Isoprenaline	CK-MB, AST, ALT, ALP, and HsCRP	The extract protected experimentally induced MI,
	un, 2010	(Aqueous fruit		Tier, and Tisord	revealed by the amelioration
		extract)			of histological changes, and
					biochemical and
					inflammatory markers of cardiac tissue damage.
52	Karthikeyan k.m.r et	Helicteresisora	Isoprenaline	cTnI, CK-MB, LDH,	High dose extract produces
	al., 2016 ⁶⁷			HDL, LDL, VLDL,	significant cardioprotection
		(Ethanolic extract of bark)		ALT, AST, BUN, Cr, MDA, SOD, GSH, TC	against ISO induced MI. Further characterization of
		vark)		and ECG	the active constituents would
					be necessary to elucidate the
					exact mechanism of action
53	Tayyaba Afsar et al., 2017 ⁶⁸	Acacia hydaspica	Doxorubicin	CK-MB, CK, AST and LDH, CAT, POD,	AHE may be beneficial for DOX-induced cardiotoxicity
	2017	(bark, twigs, and		SOD, QR, GSH, GST,	by ameliorating oxidative
		leaves extract)		GSR, GPx, γ-GT and	stress, basic research needs to
				MDA	be done in a relevant model
54	Mohamed M. Abdel-D	Allium sativum	Doxorubicin	CK-MB, LDH, TNF-	to explicate the mechanism Pretreatment with allicin
	aim et al., 2017 ⁶⁹			α, IL-1β, 8-OHdG,	significantly ameliorated the
				CAT, MDA, NO,	biochemical and histological
55	FulyaBenzer et al.,	Curcuma longa	Doxorubicin	GSH, GPx and SOD cTnI, CK-MB, LDH,	changes, induced by DOX Curcumin attenuates DOX-
	2017 ⁷⁰	Curcuma tonga	Doxordolem	NF-kB, TNF- α , and	associated cardiotoxicity by
		(Curcumin)		IL-1β, iNOS, CAT,	reducing ROS
				GPx, GSH, MDA, and	
56	YUAN Yan et al.,	Ilex cornuta	Isoprenaline	SOD CK, LDH, SOD,	ICR may have
	2017 ⁷¹		and Pituitrin	MDA, and GSH	cardioprotective effects
		(Hydroalcoholic root			achieved by its antioxidant
		extract)			and anti-apoptosis activities, so it may be a potential
					natural therapeutic source for
					the treatment of cerebral
59	Kamrun Nahar et al.,	Amaranthus tricolor	Isoprenaline	CK-MB, CAT, LDL,	ischemia A. tricolor extract is effective
	2018 ⁷²	immuning ittoid	Isoprenamic	HDL, MPO, NO,	in ISO-induced MI, this
		(Red spinach leaf		AST, ALT, ROS,	could be associated with the
		extract)		TNF-α, IL-1β, iNOS, NF-kb, GSH, MDA	reduction of the extent of
				and SOD	myocardial damage caused by oxidative stress and
					attenuation of inflammatory
	D. I. A. Elit	***	T	THE LOW MENT AND A PART	cells infiltration.
60	Radwa A. Eladwy et al., 2018 ⁷³	Vaccinium angustifolium	Isoprenaline	cTnI, CK-MB, LDH, AST, GSH, MDA,	BB extract alleviates the ISO-induced cardiotoxicity
	an, 2010	angusigoumn		CAT, IL-6, TNF-α,	as evidenced by lowering
		(Blue berry leaf		NK-kb, COX-2, TGF-	myocardial injury markers
		extract)		β, and ECG	and preventing ECG abnormalities and
1					aunormanues and

					histopathological changes
61	Rakam Gopi Krishna et al., 2018 ⁷⁴	Bougainvillea glabra (Methanolic whole plant extract)	Isoprenaline	CK-MB, ALT, AST, TG, TC, HDL, LDL, VLDL, TP, CAT, SOD, GSH, GPx and MDA	The cardioprotective effect of plant extract is probably related to a counteraction of free radicals by its antioxidant property. Histopathological findings further confirmed the cardiac protective effect.
62	Nahar S te al., 2018 ⁷⁵	Curcuma Longa	Isoprenaline	AST and LDH	Curcuma longa has cardioprotective effect on ISO induced myocardial injury, so it is acceptable as a daily source of naturalantioxidantst.
63	BhupalamPradeepkum ar et al., 2018 ⁷⁶	GymnemaSylvestre (Flavanoid fraction from leaf extract)	Doxorubicin	CK-MB, LDH, AST, TC, TG, MDA, UA, Ca ²⁺ , NO, SOD, CAT, Na ⁺ K ⁺ ATPase, Mg ²⁺ ATPase, Ca ²⁺ ATPase, GSH, MDA	Pre-treatment of rats with the flavonoid fraction of GymnemaSylvestre significantly ameliorated the toxic insult perpetrated by dox
64	Hyo-Suk Ahn et al., 2018 ⁷⁷	Ecklonia cava (Methanolic extract from brown algae)	Doxorubicin	CK-MB, LDH, AST, ALT, TC, TG, HDL, LDL, CAT, SOD and ECG	EC was safe and cardioprotective against ISO-induced cardiotoxicity in a dose-dependent manner with the evidence based on biochemical results and histopathological findings
65	Orelien Sylvain MtopiBopda et al. 2018 ⁷⁸	(Aqueous leaf extract)	Isoprenaline	CK-MB, ALT, TC, and TG	The extract decreased cardiovascular biomarkers levels in ISO-administered rats while protecting the heart from injury. Therefore, the extract might have cardioprotective properties, if administered at 100-200mg/kg/day
66	Farzana Akther Sumi et al., 2019 ⁷⁹	Aloe vera (Hydroalcoholic gel extract)	Isoprenaline	CK-MB, ALT, ALP, AST, SOD, CAT, GSH, and MDA	Aloe vera gel showed cardioprotective activity, this may be attributed to the restoration of antioxidant enzymes and decreased lipid peroxidation of the heart.
67	Ekram Nemr Abd Al Haleem et al., 2019 ⁸⁰	Casuarina suberosa (leaf extract)	Isoprenaline	cTn, CK-MB, LDH, AST, ALT, MPO, CAT, GSH, SOD, NO, MDA, GST, and ECG	leaves extract reduces ISO- induced cardiotoxicity, prevention myocardial necrosis and accompanying oxidative stress
68	Agnel Arul John Nayagam et al., 2019 ⁸¹	Caesalpinia bonducella (Aqueous plant extract)	Doxorubicin	cTnT, CK-MB, CK, LDH, Na ⁺ K ⁺ ATPase, Mg ²⁺ ATPase, Ca ²⁺ ATPase, HDL, LDL, VLDL, TP, DNA, RNA, TC, TG	Caesalpinia bonducella L. protects cardiac muscle and helps in maintaining the myocardial cell membrane integrity and function thereby protecting the cells from rupture and preventing leakage of the cardiac markers and lipids
69	Maha Abu Gazia et al., 2019 ⁸²	Elettaria cardamomum (Aqueous extract)	Doxorubicin	cTnT, LDH, CK, NO, MDA, SOD, CAT, GPx, CAS-3, and NF- Kb	CAR extract ameliorated the toxic effect of DOX by reducing structural disruptions and functional disturbances via lowering serum parameters

70	Samer Tariq Jasim et al., 2019 ⁸³	Gingko Biloba	Doxorubicin	cTnI, TNF-α, CPP-32, BNP, MDA, and GSH	Ginkgo Biloba was found to have a significant cardioprotective effect through attenuation of oxidative stress DOX-induced cardiotoxicity, this may be due to flavonoids
71	C. Sumanjali et al., 2019 ⁸⁴	Pulicariawightania (Ethanolic leaf extract)	Isoprenaline	CK-MB, LDH, AST, ALT, ALP, TC, TG, HDL, LDL and VLDL	Treating with extract alters cardiac biomarkers and helps to treat coronary heart disease, which may be due to the antioxidant effect of flavonoids
72	Zhenhuang Shen et al., 2019 ⁸⁵	Schisandra chinensis (Bee pollen extract-SCBPE)	Isoprenaline	Bc12, Bax, HO-1, Nrf- 2, AST, LDH, CK, SOD, GPx and CAT	SCBPE exert an antioxidative and cardioprotective effect. The study provides a scientific basis for functional food for the prevention of MI
73	Salma A. El-Marasy et al., 2020 ⁸⁶	Thymus vulgaris (Thymol)	Adrenaline	CK, GSH, MDA, LDH, AST, NF-kB, IL-1β, CPP-32, Bcl-2, and ECG	Thymol possessed cardioprotective effect against adrenaline-induced MI by ameliorating cardiac tissue biomarkers, attenuating ECG changes, improving histopathological changes resulting from oxidative stress, inflammation, and apoptosis
74	Priya Bisen et al., 2020 ⁸⁷	Amaranthus cruentus (Ethanolic leaf extract)	Isoprenaline	AST, ALP, ALT, LDL, VLDL, HDL and TC	The outcomes of the present study revealed a cardio-protective effect of Amaranthus cruentus extract. There was an increase in the overall integrity of targets studied, mechanism need to be established
75	Hassan N. Althurwi et al., 2020 ⁸⁸	Cymbopogon Proximus (Hydrodistilled essential oil)	Isoprenaline	ANP, BNP, β-MHC, P1NP and P3NP	C. Proximus showed cardioprotective against ISO induced cardiac hypertrophy and fibrosis. The correlation between pure components of the essential oil extract and the observed effect needs to be done
76	MbidaHacheked et al., 2020 ⁸⁹	Datura metel (Aqueous seed extract-AESDM)	Doxorubicin	AST, ALT, TC, TG, MDA, SOD, CAT, GSH, HDL and LDL	AESDM preventsDOX- induced cardiotoxicity, antioxidant and hypolipidemic properties may be due to alkaloids, flavonoids.
79	A. O. Fajobi et al., 2020 ⁹⁰	Pterocarpus mildbraedii (Methanolic leaf extract)	Isoprenaline	cTnT, CK-MB, LDH, TP, TG, TC, LDL, HDL, VLDL, GSH, SOD, CAT, heart and plasma (VIT C and VIT E), ALA, GSH, GPx	The study demonstrates the protective effect of P.mildbraedii. This might be due to the presence of vital constituents which have been reported to possess antioxidant and hypocholesterolemic activities
80	Rahul Chaudhary et al., 2020 ⁹¹	Terminalia bellirica (Methanolic extract-METB)	Doxorubicin and Isoprenaline	cTnI, cTnT, CK-MB, MDA, CK, SOD, CAT, GSH, ALP, AST, ALT, UA, TC,	METB showed dose dependent cardioprotection. The myocardial stabilizing effects are beneficial on

				TG, HDL, LDL, and VLDL	cardiac health in patients to avoid/minimize the risk of cardiotoxicity
81	FayzaTawfiekAbdl Aziz et al., 2021 ⁹²	Bauhinia madagascariensis (Methanolic extract) Bauhinia purpurea (Methanolic extract)	Adrenaline	CK-MB, LDH, AST, ALT, ACE, TNF-α, MMP-9, iNOS, NO, GSH, MDA, and ECG	Both extracts possessed a potent protective activity against adrenaline-induced cardiotoxicity via improving cardiac function through its anti-oxidant, anti-inflammatory effects
82	EneteUchenna et al., 2021 ⁹³	Jatropha tanjorensis (Methanolic leaf extract)	Isoprenaline	cTnI, CK-MB, LDH, HsCRP, MDA, SOD, GSH, GPx, and CAT	To some extent, extractpossessess mild cardioprotective potency at a certain dose range but could not serve as a potential agent for the prevention of cardiotoxicity. The result of this study revealed the need for proper dosing of crude drug
83	Aminu Lailaba Abubakar et al., 2021 ⁹⁴	Sclerocaryabirrea (Methanolic Stem bark extract)	Doxorubicin	cTn, CK, AST, MYO, MDA, SOD, CAT, and ECG	S. birrea effectively prevented tissue damage by decreasing the oxidative stress through antioxidant therapy making it a suitable candidate to ameliorate MI
84	Ioana Corina Bocsan et al., 2021 ⁹⁵	Nigella sativa (NSO) Vitis vinifera (GSO)	Isoprenaline	cTnT, CK-MB, AST, ALT, IL-1β, IL-6, TNF-α, IL-10 and ECG	NSO and GSO partially prevented ECG alterations and the modification of biological and inflammatory parameters. Both compounds were shown to have good potential for future treatment in CVDs
85	HodaQuaisul et al., 2021 ⁹⁶	Withaniacoagulans (coagulin)	Isoprenaline	cTnI, CK-MB, AST, ALT, TG, TC, LDH, HDL, LDL, GSH, GPx, GR, SOD, CAT and MDA	Coagulin improved myocardial histoarchitecture against ISO-induced MI, the present study strongly suggests that multiple mechanisms may be responsible for the cardioprotective effect
86	M. Santosh Kumar et al., 2022 ⁹⁷	Acorus calamus (Ethanolic extract)	Doxorubicin	CK-MB, LDH, CK, Na ⁺ K ⁺ ATPase, Mg ²⁺ ATPase, Ca ²⁺ ATPase, TC, TG, HDL, GSH, MDA, SOD, CAT and ECG	The study suggests that AC protects from CVDs, improved cardiac injury markers, maintained the BP, and re-establishment antioxidant status are seen. Further molecular level of investigation is to be done
87	Dalia I. Hamdan et al., 2022 ⁹⁸	Morus macroura (Dichloromethane leaf extract)	Isoprenaline	CK-MB, LDH, and SOD	Extract showed cardioprotective and antidepressive properties against ISO-induced post-MI depression as they persuade cardioprotection by decreasing myocardial enzymes and safeguarding the cardiac muscle histology

5. CONCLUSION

This comprehensive evaluation aids in identifying the cardioprotective potential of various extracts by examining their effects on various in-vitro and in-vivo parameters in the presence of medications that cause cardiotoxicity. The researchers propose anti-

oxidant, anti-apoptotic, and anti-inflammatory properties, as well as ion channel regulation, metal chelation, and activation/inhibition of cellular or non-cellular enzymes as possible mechanism. However, because the current evidence is restricted to preclinical trials, identification of the individual phytochemical responsible, and a poor pharmacokinetic profile in humans, hence derivatives of phytochemicals should be taken into the picture to improve their profile.

In contrast, given natural products' multitarget and multicomponent action strategies, the extract could be a unique supplementary way to improve the therapeutic potential in cardiomyopathy patients by modulating the pathogenic process of cardiomyocyte cell death and increasing heart function. In addition, only a few of the plant extracts and formulations researched for their therapeutic and preventive effects in experimental cardiotoxicity models have been studied in clinical trials.

REFERENCES

- 1. HassanpourFard M, Ghule AE, Bodhankar SL, Dikshit M. Cardioprotective effect of whole fruit extract of pomegranate on doxorubicin-induced toxicity in rat. Pharmaceutical Biology. 2011 Apr 1;49(4):377-82.
- 2. Soncharan P, Shanmugarajan TS, Somasundaram NM, Niladri M. Protective effect of Syzygium cumini seeds against doxorubicin-induced cardiotoxicity in rats. Int J Pharm Life Sci. 2010;6:343-9.
- 3. Aziz FT, Sanad FA, Temraz A, El-Tantawy WH, Hassan MA. Study of cardioprotective activity of the methanolic extract of the aerial parts of Bauhinia madagascariensis compared to Bauhinia purpurea against adrenaline-induced myocardial toxicity in rats. Drug and Chemical Toxicology. 2021 Jun 24:1-1.
- 4. Allawadhi P, Khurana A, Sayed N, Kumari P, Godugu C. Isoproterenol-induced cardiac ischemia and fibrosis: Plant-based approaches for intervention. Phytotherapy Research. 2018 Oct;32(10):1908-32.
- 5. Abd Al Haleem EN, Ahmed SF, Temraz A, El-Tantawy WH. Evaluation of the cardioprotective effect of casuarina suberosa extract in rats. Drug and Chemical Toxicology. 2019 Nov 28:1-1.
- 6. Gazia MA, El-Magd MA. Ameliorative effect of cardamom aqueous extract on doxorubicin-induced cardiotoxicity in rats. Cells Tissues Organs. 2018;206(1-2):62-72.
- 7. Benzer F, Kandemir FM, Ozkaraca M, Kucukler S, Caglayan C. Curcumin ameliorates doxorubicin-induced cardiotoxicity by abrogation of inflammation, apoptosis, oxidative DNA damage, and protein oxidation in rats. Journal of Biochemical and Molecular Toxicology. 2018 Feb;32(2):e22030.
- 8. Uma Mahesh, B., Shrivastava, S., Kuncha, M., Sahu, B. D., Swamy, C. V., Pragada, R. R., Naidu, V. G. M., &Sistla, R. (2013). Ethanolic extract of Boswellia ovalifoliolata bark and leaf attenuates doxorubicin-induced cardiotoxicity in mice. *Environmental Toxicology and Pharmacology*, 36(3), 840–849.
- 9. Ahsan, F., Siddiqui, H. H., Mahmood, T., Srivastav, R. K., & Nayeem, A. (2014). Evaluation of Cardioprotective effect of Coleus forskohlii against Isoprenaline induced myocardial infarction in rats. *Indian Journal of Pharmaceutical and Biological Research*, 2(01), 17–25.
- 10. Parker, M. A., King, V., & Howard, K. P. (2001). Nuclear magnetic resonance study of doxorubicin binding to cardiolipin containing magnetically oriented phospholipid bilayers. *Biochimica et Biophysica Acta. Biomembranes*, 1514(2), 206–216.
- 11. Goormaghtigh, E., Chatelain, P., Caspers, J., &Ruysschaert, J. M. (1980). Evidence of a complex between adriamycin derivatives and cardiolipin: possible role in cardiotoxicity. *Biochemical Pharmacology*, 29(21), 3003–3010.
- 12. Xu, X., Persson, H. L., & Richardson, D. R. (2005). Molecular pharmacology of the interaction of anthracyclines with iron. *Molecular Pharmacology*, 68(2), 261–271.
- 13. Mukhopadhyay, P., Rajesh, M., Bátkai, S., Kashiwaya, Y., Haskó, G., Liaudet, L., Szabó, C., & Pacher, P. (2009). Role of superoxide, nitric oxide, and peroxynitrite in doxorubicin-induced cell death in vivo and in vitro. *American Journal of Physiology*. *Heart and Circulatory Physiology*, 296(5), H1466-83.
- 14. Ma, Q. (2013). Role of nrf2 in oxidative stress and toxicity. Annual Review of Pharmacology and Toxicology, 53, 401–426.
- 15. Behonick, G. S., Novak, M. J., Nealley, E. W., & Baskin, S. I. (2001). Toxicology update: the cardiotoxicity of the oxidative stress metabolites of catecholamines (aminochromes). *Journal of Applied Toxicology: JAT*, 21(S1), S15–S22.
- 16. Abd Al Haleem, E. N., Ahmed, S. F., Temraz, A., & El-Tantawy, W. H. (2022). Evaluation of the cardioprotective effect of Casuarina suberosa extract in rats. *Drug and Chemical Toxicology*, 45(1), 367–377. https://doi.org/10.1080/01480545.2019.1696815
- 17. El-Marasy, S. A., El Awdan, S. A., Hassan, A., & Abdallah, H. M. I. (2020). Cardioprotective effect of thymol against adrenaline-induced myocardial injury in rats. *Heliyon*, 6(7), e04431. https://doi.org/10.1016/j.heliyon.2020.e04431
- 18. Elberry, A. A., Abdel-Naim, A. B., Abdel-Sattar, E. A., Nagy, A. A., Mosli, H. A., Mohamadin, A. M., & Ashour, O. M. (2010). Cranberry (Vaccinium macrocarpon) protects against doxorubicin-induced cardiotoxicity in rats. *Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association*, 48(5), 1178–1184. https://doi.org/10.1016/j.fct.2010.02.008
- 19. Ponniah Senthil Murugan et al., 2011
- 20. Vibha, L., Asdaq, S. M. B., Nagpal, S., &Rawri, R. K. (2011). Protective effect of medicinal garlic against isoprenaline induced myocardial infarction in rats. *International Journal of Pharmacology*, 7(4), 510–515. https://doi.org/10.3923/ijp.2011.510.515
- 21. Patel, S. S., Verma, N. K., Rathore, B., Nayak, G., Singhai, A. K., & Singh, P. (2011). Cardioprotective effect of Bombax ceiba flowers against acute adriamycin-induced myocardial infarction in rats. *RevistaBrasileira de Farmacognosia: OrgaoOficial Da SociedadeBrasileira de Farmacognosia*, 21(4), 704–709. https://doi.org/10.1590/s0102-695x2011005000090
- 22. Ojha, S., Golechha, M., Kumari, S., & Arya, D. S. (2012). Protective effect of Emblica officinalis (amla) on isoproterenol-induced cardiotoxicity in rats. *Toxicology and Industrial Health*, 28(5), 399–411. https://doi.org/10.1177/0748233711413798

- 23. Ojha, S., Bhatia, J., Arora, S., Golechha, M., Kumari, S., & Arya, D. S. (2011). Cardioprotective effects of Commiphoramukul against isoprenaline-induced cardiotoxicity: a biochemical and histopathological evaluation. *Journal of Environmental Biology*, 32(6), 731–738.
- 24. Vijay T, Rajan MD, Sarumathy K, Palani S, Sakthivel K. Cardioprotective, antioxidant activities and Phytochemical analysis by GC-MS of Gmelina arborea (GA) in Doxorubicin-induced myocardial necrosis in Albino rats. Journal of Applied Pharmaceutical Science. 1930 Jan 11(Issue):198-204.
- 25. Upaganlawar, A., &Balaraman, R. (2011). Cardioprotective effects of Lagenaria siceraria fruit juice on isoproterenol-induced myocardial infarction in wistar rats: A biochemical and histoarchitecture study. *Journal of Young Pharmacists: JYP*, *3*(4), 297–303. https://doi.org/10.4103/0975-1483.90241
- 26. Mehdizadeh, R., Parizadeh, M.-R., Khooei, A.-R., Mehri, S., &Hosseinzadeh, H. (2013). Cardioprotective effect of saffron extract and safranal in isoproterenol-induced myocardial infarction in wistar rats. *Iranian Journal of Basic Medical Sciences*, *16*(1), 56–63.
- 27. Madhumitha S, Indhuleka A. Cardioprotective effect of Morus alba L. leaves in isoprenaline induced rats. International Journal of Pharmaceutical Sciences and Research. 2012 May 1;3(5):1475.
- 28. Rosales SL, Anog BF, Blanza RM, Cuartero MA, Landicho MC, Talledo EG, Cabanela RA, Dumaoal OS, Magbojos CR. Cardioprotective activity of BambusablumeanaSchultes leaf crude extract against isoproterenol-induced myocardial infarction in Sprague-Dawley rats.
- 29. Uma Mahesh, B., Shrivastava, S., Kuncha, M., Sahu, B. D., Swamy, C. V., Pragada, R. R., Naidu, V. G. M., &Sistla, R. (2013). Ethanolic extract of Boswellia ovalifoliolata bark and leaf attenuates doxorubicin-induced cardiotoxicity in mice. *Environmental Toxicology and Pharmacology*, 36(3), 840–849. https://doi.org/10.1016/j.etap.2013.07.016
- 30. Fouad, A. A., Albuali, W. H., Al-Mulhim, A. S., & Jresat, I. (2013). Cardioprotective effect of cannabidiol in rats exposed to doxorubicin toxicity. *Environmental Toxicology and Pharmacology*, 36(2), 347–357. https://doi.org/10.1016/j.etap.2013.04.018
- 31. Putri, H., Nagadi, S., Larasati, Y. A., Wulandari, N., Hermawan, A., & Nugroho, A. E. (2013). Cardioprotective and hepatoprotective effects of Citrus hystrix peels extract on rats model. *Asian Pacific Journal of Tropical Biomedicine*, *3*(5), 371–375. https://doi.org/10.1016/S2221-1691(13)60079-9
- 32. Moghaddam RA, Akhtar M, Moghaddam AA, Najmi AK. Evaluation of cardioprotective effects of Camellia sinensis on isoproterenol induced myocardial infarction. International Journal of Pharmaceutical Sciences and Research. 2013 Mar 1;4(3):1056.
- 33. Palani S, Jayakumar M, Karthi S, Raja S. Protective effects of Flacourtia indica on doxorubicin-induced cardiotoxicity in rats. Toxicological & Environmental Chemistry. 2012 May 1;94(5):1014-25.MahsaZareiet al., 2013
- 34. Kumar V, Gurusamy K, Virndha CA. Cardioprotective activity of Garcinia indica Linn. fruit extract on isoprenaline hydrochloride induced cardio toxicity in rats. Int J Pharm Pharm Sci. 2013;5(4):242-5.Adi K at al., 2013
- 35. Zarei M, Javarappa KK, Zarei M, Baker S. Cardioprotective effect of the root extract of Hemidesmus indicus against doxorubicin-induced oxidative stress in mice. Pharm Lett. 2013;5(1):334-9. Nishith Ranjan Barman et al., 2013
- 36. Shah S, Mohan M, Kasture S, Ballero M, Maxia A, Sanna C. Protective effect of Hypericum hircinum on doxorubicin-induced cardiotoxicity in rats. Natural Product Research. 2013 Aug 1;27(16):1502-7.
- 37. Adi K, Metowogo K, Mouzou A, Lawson-Evi P, Eklu-Gadegbeku K, Agbonon A, Lamboni C, Essien K, Aklikokou K, Gbeassor M. Evaluation of cardioprotective effects of Parkia biglobosa (jacq. benth) Mimosaceae stem bark. Journal of Applied Pharmaceutical Science. 1930 Jan 11;3(2):060-4.
- 38. Nandave M, Ojha SK, Kumari S, Nag TC, Mehra R, Narang R, Arya DS. Cardioprotective effect of root extract of Picrorhizakurroa (Royle Ex Benth) against isoproterenol-induced cardiotoxicity in rats.
- 39. Barman NR, Nandy S, Datta R, Kar PK. Cardioprotective effect of ethanolic extract of Urtica parviflora Roxb. against isoproterenol induced myocardial infarction in rats. Indian journal of pharmacology. 2013 Sep;45(5):513.
- 40. Panda S, Kar A, Ramamurthy V. Cardioprotective effect of vincristine on isoproterenol-induced myocardial necrosis in rats. European journal of pharmacology. 2014 Jan 15;723:451-8.
- 41. Pavlova V, Sainova I, Alexieva B, Valkova I, Markova T, Nikolova E. Antioxidant effect of Aronia melanocarpa extract after doxorubicin Treatment. Bulg. J. Agric. Sci. 2014;20:188-92.
- 42. Cao Y, Ruan Y, Shen T, Huang X, Li M, Yu W, Zhu Y, Man Y, Wang S, Li J. Astragalus polysaccharide suppresses doxorubicin-induced cardiotoxicity by regulating the PI3k/Akt and p38MAPK pathways. Oxidative medicine and cellular longevity. 2014 Oct 16;2014.
- 43. Zaki AA, Hashish NE, Amer MA, Lahloub MF. Cardioprotective and antioxidant effects of oleogum resin "Olibanum" from Bos Boswellia carteriBirdw.(Bursearceae). Chinese journal of natural medicines. 2014 May 1;12(5):345-50.
- 44. Khan MS, Singh M, Khan MA, Arya DS, Ahmad S. Scientific validation of cardioprotective attribute by standardized extract of Bombyx mori against doxorubicin-induced cardiotoxicity in murine model. EXCLI journal. 2014;13:1043.
- 45. Kumar BS, Arumugam G, Sadiq AM, Nagalingam M, Gopikrishnan M, Kanagavalli U. Cardioprotective Potential of Buchananiaaxillaris on doxorubicin induced cardiotoxicity in albino rats.
- 46. Ahsan F, Siddiqui HH, Mahmood T, Srivastav RK, Nayeem A. Evaluation of cardioprotective effect of Coleus forskohlii against isoprenaline induced myocardial infarction in rats. Indian Journal of Pharmaceutical and Biological Research. 2014 Jan 1;2(1):17.
- 47. Shatoor AS, Ahmed MA. Cardioprotective effect of Crataegusaronia syn. azarolus (L) aqueous extract against doxorubicin-induced cardiotoxicity and heart failure in Wistar rats. J Basic Appl Sci Res. 2014;4:102-14.
- 48. Abi Beaulah G, Mohamed Sadiq A, Sivakumar V, Jaya Santhi R. Cardioprotective activity of methanolic extract of Croton sparciflorus on isoproterenol induced myocardial infarcted wistar albino rats. Journal of Medicinal Plants. 2014;2(6):01-8.

- 49. Sobhana K, Nirosha K, Ravikumar A, Sravanthi RR, Chandrkala P. Evaluation of cardioprotective activity of Pandanus odoratissimus leaves against isoproterenol induced myocardial infarction in albino rats. International Journal of Novel Trends in Pharmaceutical Sciences. 2014 Sep 10;4(5):151-8.
- 50. Savsani H, Shah H, Patel K, Gandhi T. Cardioprotective effect of flavonoids rich fraction of Premnamucronata on isoproterenol-induced myocardial infarction in Wistar rats. Int. J. Phytopharmacol. 2014;5(2):95-108.
- 51. Lim KH, Cho JY, Kim B, Bae BS, Kim JH. Red ginseng (Panax ginseng) decreases isoproterenol-induced cardiac injury via antioxidant properties in porcine. Journal of medicinal food. 2014 Jan 1;17(1):111-8.
- 52. Aniss HA, Said AE, El Sayed IH, Adly C. Amelioration of adriamycin-induced cardiotoxicity by Salsola kali aqueous extract is mediated by lowering oxidative stress. Redox Report. 2014 Jul 1;19(4):170-8.
- 53. Rabadia J, Hirani U, Kardani D, Kaneria A. Cardioprotective Effect of Methanolic extract of Syzygium Aromaticum on isoproterenol induced myocardial infarction in Rat. Asian Journal of Pharmacology and Toxicology. 2014;2(4):01-6.
- 54. Jagetia GC, Venkatesh P. An indigenous plant bael (Aegle marmelos (L.) Correa) extract protects against the doxorubicin-induced cardiotoxicity in mice. Biochem physiol. 2015;4(163):2.
- 55. Gnanapragasam A, Ebenezar KK, Sathish V, Govindaraju P, Devaki T. Protective effect of Centella asiatica on antioxidant tissue defense system against adriamycin induced cardiomyopathy in rats. Life Sciences. 2004 Dec 17;76(5):585-97.
- 56. Obouayeba AP, Meité S, Boyvin L, Yeo D, Kouakou TH, N'Guessan JD. Cardioprotective and anti-inflammatory activities of a polyphenols enriched extract of Hibiscus sabdariffa petal extracts in wistar rats. Journal of Pharmacognosy and Phytochemistry. 2015 May 1;4(1).
- 57. Yalu H, Nagarathna PK. Cardioprotective Activity Of Leaves Of Kigelia Africana On Isoprenaline Induced Myocardial Infarction. International Journal of Ayurveda and Pharma Research. 2015 Dec 14.
- 58. Geng ZH, Huang L, Song MB, Song YM. Protective effect of a polysaccharide from Salvia miltiorrhiza on isoproterenol (ISO)-induced myocardial injury in rats. Carbohydrate polymers. 2015 Nov 5;132:638-42.
- 59. Oyinloye BE, Ajiboye BO, Ojo OA, Nwozo SO, Kappo AP. Cardioprotective and antioxidant influence of aqueous extracts from Sesamum indicum seeds on oxidative stress induced by cadmium in wistar rats. Pharmacognosy magazine. 2016 May;12(Suppl 2):S170.
- 60. Shukla SK, Sharma SB, Singh UR, Ahmad S, Dwivedi S. Terminalia arjuna (Roxb.) Wight &Arn. augments cardioprotection via antioxidant and antiapoptotic cascade in isoproterenol induced cardiotoxicity in rats.
- 61. Kharadi GB, Patel KJ, Purohit BM, Baxi SN, Tripathi CB. Evaluation of cardioprotective effect of aqueous extract of Allium cepa Linn. bulb on isoprenaline-induced myocardial injury in Wistar albino rats. Research in Pharmaceutical Sciences. 2016 Oct;11(5):419.
- 62. Ghoneim MA, Hassan AI, Mahmoud MG, Asker MS. Protective effect of Adansonia digitata against isoproterenol-induced myocardial injury in rats. Animal Biotechnology. 2016 Apr 2;27(2):84-95.
- 63. Varadharajan R, Rajalingam D, Palani S. GCMS/MS analysis and cardioprotective potential of Cucumis callosus on doxorubicin induced cardiotoxicity in rats. Int J Pharm Pharm Sci. 2016;8(9):239-45.
- 64. Khwaja S, Mahmood T, Siddiqui HH. Effect of ethanolic extract of Cyperus rotundus L. against isoprenaline induced cardiotoxicity.
- 65. Anitha J, Murugan K, Higuchi A, Alarfaj AA, Munusamy MA, Benelli G. In vivo pretreatment of Eudriluseugeniae powder attenuates β-adrenoceptor toxicity mediated by isoproterenol in rat model. The Journal of Basic & Applied Zoology. 2016 Aug 1;76:1-6.
- 66. Mundugaru R, Udaykumar P, Senthilkumar S, Bhat S. Cardioprotective activity of fruit of garcinia pedunculata on isoprenaline-induced myocardial infarction in rat. ||| Bangladesh Journal of Pharmacology|||. 2016 Jan 25;11(1):231-5.
- 67. Karthikeyan KM. Cardioprotective Effect of Ethanolic Extract of Bark of HelicteresIsora Linn. on Isoproterenol Induced Myocardial Infarction in Rats (Doctoral dissertation, JKK Nattraja College of Pharmacy, Komarapalayam).
- 68. Afsar T, Razak S, Batoo KM, Khan MR. Acacia hydaspica R. Parker prevents doxorubicin-induced cardiac injury by attenuation of oxidative stress and structural Cardiomyocyte alterations in rats. BMC complementary and alternative medicine. 2017 Dec; 17(1):1-4.
- 69. Abdel-Daim MM, Abdel-Rahman HG, Dessouki AA, Ali H, Khodeer DM, Bin-Jumah M, Alhader MS, Alkahtani S, Aleya L. Impact of garlic (Allium sativum) oil on cisplatin-induced hepatorenal biochemical and histopathological alterations in rats. Science of the Total Environment. 2020 Mar 25;710:136338.
- 70. Benzer F, Kandemir FM, Ozkaraca M, Kucukler S, Caglayan C. Curcumin ameliorates doxorubicin-induced cardiotoxicity by abrogation of inflammation, apoptosis, oxidative DNA damage, and protein oxidation in rats. Journal of Biochemical and Molecular Toxicology. 2018 Feb;32(2):e22030.
- 71. Yan YU, Shu PA, Shi-Lin YA, Yan-Li LI, Qiong-Ming XU. Antioxidant and cardioprotective effects of Ilex cornuta on myocardial ischemia injury. Chinese journal of natural medicines. 2017 Feb 1;15(2):94-104.
- 72. Nahar K, Kabir F, Islam P, Rahman MM, Al Mamun MA, Faruk M, Subhan N, Rahman GS, Reza HM, Alam MA. Cardioprotective effect of Amaranthus tricolor extract in isoprenaline induced myocardial damage in ovariectomized rats. Biomedicine & Pharmacotherapy. 2018 Jul 1;103:1154-62.
- 73. Eladwy RA, Mantawy EM, El-Bakly WM, Fares M, Ramadan LA, Azab SS. Mechanistic insights to the cardioprotective effect of blueberry nutraceutical extract in isoprenaline-induced cardiac hypertrophy. Phytomedicine. 2018 Dec 1;51:84-93.
- 74. Krishna RG, Sundararajan R. Cardioprotective and antioxidant effectsof Bougainvillea glabra against isoproterenol induced myocardial necrosis in albinorats. International Journal of Phytomedicine. 2018;10(1):45-57.

- 75. Nahar S, Akhter QS, Shumi MN, Tanvi NE, Yeasmin N, Akter S, Yeasmin S. Protective effect of Curcuma longa (turmeric) on serum aspartate aminotransferase and lactate dehydrogenase in isoproterenol induced myocardial injury in rats. Bangladesh Medical Journal. 2018;47(3):13-7.
- 76. Pradeepkumar B, Sudheer A, Reddy TS, Reddy KS, Narayana G, Veerabhadrappa K. Cardioprotective activity of flavonoid fraction of gymnemasylvestre leaves on doxorubicin induced cardiac damage. Journal of Young Pharmacists. 2018 Oct 1:10(4):422.
- 77. Khair NH, Cyriac KS, Koneri R, Abubakr N, Barakat E. THE EVALUATION OF CARDIOPROTECTIVE ACTIVITY OF ECKLONIA CAVA EXTRACT IN RATS.
- 78. Bopda OS, Koumtouzi NN, Bilanda D, Dzeufiet DP, Keambou CT, Dimo T. Kalanchoe pinnata aqueous extract safety and potential cardioprotective effects in isoprenaline treated rats. J Phytopharmacol. 2018;7(5):404-11.
- 79. Sumi FA, Sikder B, Rahman MM, Lubna SR, Ulla A, Hossain MH, Jahan IA, Alam MA, Subhan N. Phenolic content analysis of aloe vera gel and evaluation of the effect of aloe gel supplementation on oxidative stress and fibrosis in isoprenaline-administered cardiac damage in rats. Preventive nutrition and food science. 2019 Sep;24(3):254.
- 80. Abd Al Haleem EN, Ahmed SF, Temraz A, El-Tantawy WH. Evaluation of the cardioprotective effect of casuarina suberosa extract in rats. Drug and Chemical Toxicology. 2019 Nov 28:1-1.
- 81. Nayagam AA, Gunasekaran S, Rangarajan S, Muthaiah S. Myocardial potency of Caesalpinia bonducella Linn. on doxorubicin induced myocardial infarction in albino rats. Clinical Phytoscience. 2019 Dec;5(1):1-7.
- 82. Gazia MA, El-Magd MA. Ameliorative effect of cardamom aqueous extract on doxorubicin-induced cardiotoxicity in rats. Cells Tissues Organs. 2018;206(1-2):62-72.
- 83. Jasim ST, Khaleel KJ, Al-kuraishy HM, A-lGareeb AI. Gingko Biloba protects cardiomyocytes against acute doxorubicin induced cardiotoxicity by suppressing oxidative stress. Animal Research. 2019 Apr;69(8).
- 84. Sumanjali C, Manohar R, Sheeba SS, Syamala M, Jyothsana T. Cardioprotective effect of pulicariawightania against isoproterenol induced myocardial infarction in experimental rats. International Journal of Research In Phytochemical And Pharmacological Sciences. 2019 Jul 9;1(1):12-9.
- 85. Shen Z, Geng Q, Huang H, Yao H, Du T, Chen L, Wu Z, Miao X, Shi P. Antioxidative and cardioprotective effects of Schisandra chinensis bee pollen extract on isoprenaline-induced myocardial infarction in rats. Molecules. 2019 Jan;24(6):1090.
- 86. El-Marasy SA, El Awdan SA, Hassan A, Abdallah HM. Cardioprotective effect of thymol against adrenaline-induced myocardial injury in rats. Heliyon. 2020 Jul 1;6(7):e04431.
- 87. Bisen P, Chaturvedi A, Ganeshpurkar A, Dubey N. Cardioprotective Effect of Ethanolic Extract of Leaves of Amaranthus cruentus in Isoprenaline-Induced Myocardial Infarction in Rats. Free Radicals and Antioxidants. 2020 Aug 1;10(1):24-8.
- 88. Althurwi HN, Abdel-Kader MS, Alharthy KM, Salkini MA, Albaqami FF. Cymbopogon proximus essential oil protects rats against isoproterenol-induced cardiac hypertrophy and fibrosis. Molecules. 2020 Jan;25(8):1786.
- 89. Hacheked M, Emery TD, Sidiki A, Perfusion AA, Jacqueline ZM. Cardioprotective effect of the aqueous extract of seeds of Datura metel (Solanaceae) on acute cardiotoxicity induced with doxorubicin in Wistar rats. GSC Biological and Pharmaceutical Sciences. 2020;13(3):008-18.
- 90. Fajobi AO, Okon BO, Oyedapo OO. Cardioprotective activities of Pterocarpus mildbraedii leaves on isoproterenol-induced myocardial infarction in rats. Eur J Med Plants. 2020;31:20-37.
- 91. Chaudhary R, Singh R, Verma R, Kumar P, Kumar N, Singh L, Kumar S. Investigation on protective effect of Terminalia bellirica (Roxb.) against drugs induced cardiotoxicity in wistar albino rats. Journal of Ethnopharmacology. 2020 Oct 28:261:113080.
- 92. Aziz FT, Sanad FA, Temraz A, El-Tantawy WH, Hassan MA. Study of cardioprotective activity of the methanolic extract of the aerial parts of Bauhinia madagascariensis compared to Bauhinia purpurea against adrenaline-induced myocardial toxicity in rats. Drug and Chemical Toxicology. 2021 Jun 24:1-1.
- 93. Uchenna E, Obinna A, Unegbu Chika C, NnaomaIKenna E. Cardioprotective effect of methanol extract of Jatropha tanjorensis leaves in isoprenaline induced myocardial infarction in albino rats: cardiac function biomarkers, antioxidant and heart histoarchitecture evaluation.
- 94. Abubakar AL, Imam AY, Lawal A, Jaafaru A, Mistura AO, Danmaigoro A. Cardioprotective effects of extract of Sclerocaryabirrea stem bark on doxorubicin induced cardiotoxicity in rats.
- 95. Bocsan IC, Pop RM, Sabin O, Sarkandy E, Boarescu PM, Roşian ŞH, Leru PM, Chedea VS, Socaci SA, Buzoianu AD. Comparative protective effect of nigella sativa oil and vitis vinifera seed oil in an experimental model of isoproterenol-induced acute myocardial ischemia in rats. Molecules. 2021 Jan;26(11):3221.
- 96. Quaisul H. In Vivo Cardioprotective Effect of Withania coagulin Isolated from Withaniacoagulans Fruits on Isoprenaline-Induced Myocardial Injury in Experimental Rats. Current Trends in Biotechnology and Pharmacy. 2021;15(6):28-33.
- 97. Kumar MS, Hiremath VS. Cardioprotective effect of Acorus calamus against doxorubicin-induced myocardial toxicity in albino Wistar rats. Indian Journal of Health Sciences and Biomedical Research (KLEU). 2016 May 1;9(2):225.
- 98. Hamdan DI, Hafez SS, Hassan WH, Morsi MM, Khalil HM, Ahmed YH, Ahmed-Farid OA, El-Shiekh RA. Chemical profiles with cardioprotective and anti-depressive effects of Morus macroura Miq. leaves and stem branches dichloromethane fractions on isoprenaline induced post-MI depression. RSC Advances. 2022;12(6):3476-93.