Python Programming for Graph Coloring Algorithms

Ganga K. M. and Sreehari A., K. A. Germina,
1Department of Mathematics, Christ Deemed to be University, Bangalore,
2Department of Mathematics, Central University of Kerala, Kasargod, India

Abstract—In this paper, we discuss different heuristic graph coloring algorithms specifically; First fit algorithm, Welsh Powell algorithm, Largest degree ordering algorithm, Incidence Degree Ordering Algorithm, Degree of Saturation Algorithm and Recursive Largest First Algorithm. This paper provides the python program that results in the coloring given by the above-mentioned algorithms.

IndexTerms—Python program, Graphcoloring algorithms. (Keywords)

I. INTRODUCTION
A Graph coloring problem is a problem that involves assigning colors to the vertices of a graph. Graph coloring has a wide range of applications in scheduling, Mobile radio frequency assignment, Register Allocation, and so on. Proper coloring of a graph assigns a color to the vertex of the graph such that no two adjacent vertices get the same color. We can color a graph properly in many ways. The question is to find the minimum number of colors used to color the graph properly. The chromatic number of the graph G given by $\chi(G)$ is the minimum number of colors used to color the graph properly. There are different types of vertex coloring algorithms.

II. PYTHON IMPLEMENTATION OF GRAPH COLORING ALGORITHMS
In this paper, we concentrate on python programming of the algorithms mentioned below:

- **First Fit Algorithm** [1]: Arrange the vertices in some arbitrary order and color them in the arranged order by using proper coloring. This algorithm provides the steps involved in this algorithm.

- **Welsh Powell Algorithm** [4]: It arranges the vertices in descending order of their degrees and assigns a color to each vertex based on its adjacency.

- **Largest Degree Ordering Algorithm** [2]: In this algorithm the vertices are ordered in descending order and proper coloring of the graph is followed in this sequential manner (Largest first colored).

- **Incidence Degree Ordering Algorithm** [3]: The idea of coloring uses arranging the vertices in descending order of their degrees and finding the number of adjacent colored vertices.

- **Degree of Saturation Algorithm** [3]: This idea is similar to that of the one used in Incidence degree ordering except that we find the number of adjacent vertices that are colored by different colors.

- **Recursive Largest First Algorithm** [3]: It uses a recursive structure for coloring the vertices.

Program for Construction of Graph

```python
# required modules
import networkx as nx
import numpy as np

G = nx.Graph()  # define the graph G
G.add_node("a")  # define vertices
G.add_node("b")
G.add_node("c")
G.add_node("d")
G.add_node("e")
G.add_node("f")
G.add_node("g")
G.add_edge("a", "b")  # edge between the vertices
```


G.add_edge("a", "d")
G.add_edge("a", "g")
G.add_edge("b", "c")
G.add_edge("b", "d")
G.add_edge("d", "e")
G.add_edge("d", "c")
G.add_edge("e", "f")
G.add_edge("e", "g")
G.add_edge("f", "g")
nx.draw_networkx(G)

This graph issued to test the outcome of different algorithms. We test the outcome of different algorithm in the graph.

ImplementationofFirstfitAlgorithm

def first_fit_algo(G):
 # def function
 node=list(G.nodes())
 order=len(node)
 color_list=[order + 1]*order
 color_list[0]=1
 adj=nx.adjacency_matrix(G)
 Natural=np.arange(1,order+1) #list of natural numbers
 K=[]
 for i in range(1,order):
 for j in range(order):
 if adj[i,j]==1:
 K.append(color_list[j])
 diff_list=list(set(Natural)-set(K))
 color_list[i]=min(diff_list)
 K.clear()
 diff_list.clear()
 result=zip(node,color_list)
 return print(tuple(result))

first_fit_algo(G)

Output: Vertices and its corresponding colors are obtained by using the above method.

\((('a', 1), ('b', 2), ('c', 1), ('d', 3), ('e', 1), ('f', 2), ('g', 3))\)

Timecomplexity: The time complexity of this program is \(O(n^8)\). Where \(n\) is the order of the graph. So this program has polynomial time complexity.
Implementation of Welsh-Powell Algorithm

```python
def welsh_powell_algo(G):
    node=list(G.nodes())
    order=len(node)
    color_list=[order + 1]*order
    adj=nx.adjacency_matrix(G)
    Natural=np.arange(1,order+1)
    colored_vertex=[]
    K=[]
    z=[]
    for c in range(order):
        for i in range (order):
            for j in range (order):
                if adj[i,j]==1:
                    if i not in colored_vertex:
                        z.append(i)
            w=max(set(z),key=z.count)
            for j in range(order):
                if adj[w,j]==1:
                    K.append(color_list[j])
            diff_list=list(set(Natural)-set(K))
            color_list[w]=min(diff_list)
            K.clear()
            diff_list.clear()
            colored_vertex.append(w)
    for j in range(order):
        if adj[w,j]!=1:
            if j not in colored_vertex:
                if color_list[j]== order +1:
                    for i in range(order):
                        if adj[i,j]==1:
                            K.append(color_list[i])
                if color_list[w] not in K:
                    color_list[j]=color_list[w]
                    colored_vertex.append(j)
            w=j
    K.clear()
    j=j+1
    c=c+1
    result=zip(node,color_list)
    return
welsh_powell_algo(G)
```

Output: Vertices and its corresponding colors are obtained by using the above method.

```
(('a', 2), ('b', 3), ('c', 2), ('d', 1), ('e', 2), ('f', 1), ('g', 3))
```
Time complexity: The time complexity of this program is $O(n^K)$. Where n is the order of the graph. So this program has polynomial time complexity.

Implementation of Largest Degree Ordering Algorithm

```python
def largest_degree_order_algo(G):
    node = list(G.nodes())
    order = len(node)
    color_list = [order + 1] * order
    color_list[0] = 1
    deg_seq = sorted(G.degree, key=lambda x: x[1], reverse=True)
    n = 0
    vertex_deg_seq = [x[n] for x in deg_seq]
    adj = nx.adjacency_matrix(G, nodelist=vertex_deg_seq)
    Natural = np.arange(1, order + 1)
    dup_list = []
    K = []
    for i in range(1, order):
        for j in range(order):
            if adj[i, j] == 1:
                K.append(color_list[j])
        diff_list = list(set(Natural) - set(K))
        color_list[i] = min(diff_list)
        K.clear()
        diff_list.clear()
    result = zip(vertex_deg_seq, color_list)
    return print(tuple(result))
largest_degree_order(G)
```

Output: Vertices and its corresponding colors are obtained by using the above method.

```
(('d', 1), ('a', 2), ('b', 3), ('e', 2), ('g', 1), ('c', 2), ('f', 3))
```

Time complexity: The time complexity of this program is $O(n^K)$. Where n is the order of the graph. So this program has polynomial time complexity.

Implementation of Incidence Degree Ordering Algorithm

```python
def incident_deg_algo(G):
    node = list(G.nodes())
    order = len(node)
    color_list = [order + 1] * order
    deg_seq = sorted(G.degree, key=lambda x: x[1], reverse=True)
    n = 0
    vertex_deg_seq = [x[n] for x in deg_seq]
    color_list[0] = 1
    adj = nx.adjacency_matrix(G, nodelist=vertex_deg_seq)
    Natural = np.arange(1, order + 2)
    dup_list = []
    colored_vertex = []
    colored_vertex.append(0)
```
s=[]
x=[]
for v in range(order):
p=[]
for i in range(order):
 for j in range(order):
 if adj[i,j]==1:
 if color_list[j]!=order+1:
 p.append(i)
 j=j+1
 i=i+1
for n in p:
 if n not in colored_vertex:
 x.append(n)
if len(x)!=0:
 w=max(set(x),key=x.count)
colored_vertex.append(w)
for m in range(order):
 if adj[w,m]==1:
 s.append(color_list[m])
diff_list=list(set(Natural)-set(s))
color_list[w]=min(diff_list)
diff_list.clear()
s.clear()
x.clear()
v=v+1
result=zip(vertex_deg_seq,color_list)
return
print(tuple(result))

incident_deg_algo(G)

Output: Vertices and its corresponding colors are obtained by using the above method.

\[(('d', 1), ('a', 2), ('b', 3), ('e', 2), ('g', 1), ('c', 2), ('f', 3))\]

Time complexity: The time complexity of this program is $O(n^K)$. Where n is the order of the graph. So this program has polynomial time complexity.

Implementation of Degree of Saturation Algorithm

def deg_sat_algo(G):
 node=list(G.nodes())
 order=len(node)
 color_list=[order + 1]*order
 deg_seq=sorted(G.degree, key=lambda x: x[1], reverse=True)
 n=0
 vertex_deg_seq=[x[n] for x in deg_seq]
 color_list[0]=1
 adj=nx.adjacency_matrix(G,nodelist=vertex_deg_seq)
 Natural=np.arange(1,order+1)
colored_vertex=[]
s=[]
x=[]
z=[]
for v in range(1,order):
 p=[]
 for i in range(1,order):
 for j in range(order):
 if adj[i,j]==1:
 if color_list[j]!=order+1:
 p.append(color_list[j])
 set(p)
 for n in p:
 x.append(i)
 p.clear()
 for q in x:
 if q not in colored_vertex:
 z.append(q)
 if len(z)!=0:
 w=max(set(z),key=z.count)
 colored_vertex.append(w)
 x.clear()
 for m in range(order):
 if adj[w,m]==1:
 s.append(color_list[m])
 diff_list=list(set(Natural)-set(s))
 color_list[w]=min(diff_list)
 s.clear()
 diff_list.clear()
 x.clear()
 z.clear()
 v=v+1
result=zip(vertex_deg_seq,color_list)
return print(tuple(result))

def deg_sat_algo(G):
 Output: Vertices and its corresponding colors are obtained by using the above method.

 ((d', 1), (a', 2), (b', 3), (e', 2), (g', 1), (c', 2), (f', 3))

 Time complexity: The time complexity of this program is O(n^6). Where n is the order of the graph. So this program has polynomial time complexity.

 Implementation of Recursive Largest First Algorithm

 def recursive_lf_algo(G):
 node=list(G.nodes())
 order=len(node)
 color_list=[order]*order
 deg_seq=sorted(G.degree, key=lambda x: x[1], reverse=True)
 }
n=0
vertex_deg_seq=[x[n] for x in deg_seq]
color_list[0]=1
adj=nx.adjacency_matrix(G,nodelist=vertex_deg_seq)
Natural=np.arange(1,order+1)
colored_vertex=[]
K=[]
z=[]
u=[]
v=[]
w=0
colored_vertex.append(0)
for c in range(1,order):
 for j in range(order):
 if adj[w,j]==1:
 u.append(j)
 else:
 v.append(j)
for q in v:
 for r in u:
 if adj[q,r]==1:
 if q not in colored_vertex:
 z.append(q)
if len(z)!=0:
 w=max(set(z),key=z.count)
colored_vertex.append(w)
for m in range(order):
 if adj[w,m]==1:
 K.append(color_list[m])
diff_list=list(set(Natural)-set(K))
color_list[w]=min(diff_list)
K.clear()
diff_list.clear()
z.clear()
u.clear()
v.clear()
c=c+1
result=zip(vertex_deg_seq,color_list)
for b in range(order):
 if color_list[b]== order:
 for i in range(1,order):
 for j in range(order):
 if adj[i,j]==1:
 K.append(color_list[j])
diff_list=list(set(Natural)-set(K))
color_list[i]=min(diff_list)
K.clear()
diff_list.clear()
return print(tuple(result))

recursive_lf_algo(G)
Output: Vertices and its corresponding colors are obtained by using the above method.

Time complexity: The time complexity of this program is $O(n^k)$. Where n is the order of the graph. So this program has polynomial time complexity.

III. CONCLUSION

In this paper, we introduce six different python programming for the heuristic algorithms in which each algorithm gives different colors when applied. It has been found that the programs are in polynomial time and their time complexity is given by $O(n^k)$ where n is the order of the graph.

References

