SEHD – Smart Eyes Health Detection Application

Dinbandhu Pramod Sharma
Student, Pillai HOCL College of Engineering and Technology Khalapur, HOC Colony Rd, Taluka, Rasayani, Maharashtra, India

Atharva Anant Sakpal
Student, Pillai HOCL College of Engineering and Technology Khalapur, HOC Colony Rd, Taluka, Rasayani, Maharashtra, India

Abhijeet Ramdas Chaskar Student, Pillai HOCL College of Engineering and Technology Khalapur, HOC Colony Rd, Taluka, Rasayani, Maharashtra, India

Rupali Sathe
Professor, Pillai HOCL College of Engineering and Technology Khalapur, HOC Colony Rd, Taluka, Rasayani, Maharashtra, India
Abstract—This paper proposes a neural network model for segmenting blood vessels in retinal images. The model is based on the CNN module and uses dense blocks to replace the traditional U-net connections. This allows for better feature fusion from different layers of the network. Retinal vessel segmentation is an important tool for medical screening and diagnosis of various diseases. The method presented in this project contains a deep convolutional neural network (CNN) that scans the capture or uploaded image and proceeds with the dataset to show the accurable result. The smart eyes health detection application is allowed to detect the health of the eyes by capturing the image of the eyes and process inside the machine/app to compare with the dataset and the result to show the output and generate a report with the accuracy of our eyes health condition. The generated image will pass by the deep learning process with the accuracy of the result between 80% to 85% through the CNN.

Key Words: Neural network model, segmenting blood vessels, retinal images, CNN module, dense blocks, feature fusion, medical screening, diagnosis.

INTRODUCTION

SEHD – Smart Eyes Health Detection is a revolutionary application that can scan the eyes and detect various diseases using the camera of your smartphone. It can help you identify early signs of eye problems such as diabetic macular edema, leukocoria, or retinopathy. By using advanced machine learning algorithms powered by Google TensorFlow, Smart Eyes Health Detection can analyze your eye images and provide you with a diagnosis and a risk score. The app uses different machine learning models such as logistic regression, random forest, gradient boosting, and support vector machine to classify different types of eye diseases. You can also use the app to monitor your eye health over time and get personalized recommendations for prevention and treatment. Smart Eyes Health Detection is a convenient, affordable, and accurate way to protect your vision and prevent blindness.

SCOPE

Smart Eyes Health Detection app aims to provide a convenient and accessible way for people to check their eye health and detect any signs of eye diseases using their smartphone camera. The app can help users identify various eye problems such as diabetic macular edema, leukocoria, retinopathy, cataract, glaucoma, and other retinal diseases. The app can also help users monitor their vision clarity using different eye test methods such as Snellen charts, Landolt C, and Tumbling E. The app can be used by anyone who wants to protect their vision and prevent blindness, especially those who are at risk of developing eye diseases due to diabetes, age, genetics, or other factors. The app can also be used by parents who want to screen their children for early signs of eye cancer such as retinoblastoma. The app does not replace professional diagnosis or treatment, but rather serves as a screening tool that can alert users to seek medical attention if needed.

RELATED WORKS

Smart eyes health detection applications are software programs that use computer vision, artificial intelligence and mobile devices to diagnose and monitor various eye diseases and conditions. These applications have the potential to improve eye care by providing accessible, affordable and accurate solutions for screening, prevention and treatment of eye problems.

Some examples and related work of smart eyes health detection applications are:

G. Azzopardi. [2]. A U-Net Autoencoder with residual a fuzzy classifier blocks1. The paper reviews some existing retinal vessel segmentation morphological operations methods1., matched filters1, supervised learning1, and deep learning1. The paper claims that its proposed methods outperform the state-of-the-art methods on two public datasets: DRIVE and STARE

G. Lian. [3]. The paper claims that traditional methods have limitations such as sensitivity to noise, low robustness, high computational cost and difficulty in handling complex vessel structures3. Deep learning-based methods have advantages such as high performance, scalability and adaptability to different datasets3. However, deep learning-based methods also have drawbacks such as requiring large amounts of labeled data, lacking interpretability and generalization ability, and ignoring the geometric constraint of retina within the image or patch.

X. Guo et al. [4] The propose of this paper a architecture of novel neural network based on Dense U-net using Generative Adversarial Networks (GANs) and Inception module for automatic retinal vessel segmentation from fundus images. The Dense U-net using Inception module can extract multi-scale vessel features and fuse them effectively, while the GANs can improve the segmentation accuracy and generalization by fitting the pixel distribution of the ground truth. The paper evaluates the proposed method on a public dataset and achieves superior performance compared to existing methods.1

A. Al-Rahayfeh and M. Faezipour [5] EyeXam: This application uses a smartphone camera to test the user’s vision acuity, color perception, astigmatism and eye dominance. The application also provides information on eye health, eye care providers and eyewear products. But the other things to can’t scan the image properly with the accuracy result.
The purpose of this paper is to explore the potential of smart eyes health detection applications for diagnosing and monitoring various eye diseases and conditions. This research work to explore the existing smart eyes health detection application and how do they work and it also helps to find out the benefits and challenges of using smart eyes health detection application with the improved and integrated with other eye care services.

The research methodology consists of three main steps: literature review, data collection and data analysis.

1) **Methodology**

The aim of this research paper is to explore the potential of smart eyes health detection applications for diagnosing and monitoring various eye diseases and conditions. This research work to explore the existing smart eyes health detection application and how do they work and it also helps to find out the benefits and challenges of using smart eyes health detection application with the improved and integrated with other eye care services.

The research methodology consists of three main steps: literature review, data collection and data analysis.

2) **Data collection:**

The data collection involves conducting semi-structured interviews with experts in the field of eye care and smart eyes health...
detection applications. The experts include ophthalmologists, optometrists, researchers, developers and users of smart eyes health detection applications. The interviews aim to gather insights on the experiences, opinions, perceptions and suggestions of the experts regarding smart eyes health detection applications. The interviews are recorded and transcribed for data analysis. Semi-structured interviews are a type of qualitative data collection method that allows for flexibility and depth in exploring a topic. The interview questions are based on the research questions and the conceptual framework.

3) **Data Processing:**
SEHD application uses data processing to capture, analyze and visualize the images of the patients using eye image, and machine learning techniques. The application uses an image classification algorithm to detect the image center, and gaze direction of the eyes, and software tools to identify the image quality. Then we use machine learning methods to detect any diseases or infections based on visual features of the eyes. We present the results in a clear and understandable way using visualizations.

4) **Data analysis:**
The data analysis involves using thematic analysis to identify common themes, patterns and categories that emerge from the interview transcripts. Thematic analysis is a qualitative method that allows for a flexible and in-depth exploration of complex phenomena. The data analysis helps to answer the research questions and to draw conclusions and recommendations for further research. Thematic analysis involves six phases: familiarization with data; generating initial codes; searching for themes; reviewing themes; defining and naming themes; producing report. A code is a label that captures an idea or meaning in a segment of data. A theme is a pattern or concept that summarizes or describes several codes.

FRAMEWORK
The smart eyes health detection application is a mobile app that uses artificial intelligence and image processing to diagnose and monitor various eye diseases and conditions. This framework aims to provide an overview of the purpose, methods, results and discussion of this app. It starts with an introduction that explains the scope and motivation of the app, followed by a background section that gives some context on the global burden and challenges of eye diseases. The methods section describes how the app works, what data it collects and analyzes, what algorithms it uses and how it communicates with users and health care providers. The results section presents some evidence or examples of how the app can improve eye care services in terms of accuracy, accessibility, affordability and convenience. The discussion section considers the potential benefits, limitations and risks associated with using the app in different clinical settings, taking into account factors such as user privacy, data security, ethical issues, legal implications and technical challenges. The framework concludes with a summary of the main points and some recommendations or suggestions for future research or development of the app.
RESULT AND DISCUSSION

One of the benefits of smart eyes health detection applications is that they can provide early diagnosis and prevention of eye diseases. According to this report [SEHD Report], smart eyes health detection applications can detect various eye conditions such as dry eye syndrome, cataracts, glaucoma and diabetic retinopathy with high accuracy and reliability. These applications use deep learning models that are trained on large datasets of eye images and can analyze them in real time using smartphones devices. By detecting eye diseases at an early stage, smart eyes health detection applications can help users to seek timely medical treatment and avoid further complications or vision loss. Therefore, smart eyes health detection applications can improve the quality of life and well-being of users by enhancing their eye health.

Our application not only detects eye conditions with high accuracy, but also provides useful information and guidance to the users. It recommends nearby doctors with map features that can offer professional treatment for the diagnosed condition. It also gives tips for eye protection, such as wearing sunglasses, avoiding screen glare, and taking breaks from staring at devices. These features can help the users to understand their eye health status better and take preventive measures to avoid further damage.

CONCLUSION

Smart eyes health detection applications are emerging technologies that use smartphone sensors, cameras and image recognition to diagnose and monitor various eye and health conditions. These applications can provide low-cost, portable and accessible solutions for healthcare professionals and patients in remote and resource-limited settings. They can also
enable tele imaging, education and disease prevention by comparing images with preloaded databases of healthy and diseased states. Some examples of smart eyes health detection applications are: AI tumor detection, hospital hygiene inspection, eye protector application, retina diagnosis and microorganism assessment. Smart eyes health detection applications have the potential to revolutionize healthcare delivery and improve quality of life for millions of people around the world.

FUTURE SCOPE

Smart eyes health detection application is a promising field that has many potential applications and benefits for healthcare and society. Some of the possible future directions are: Developing smart glasses that can enhance the vision of visually impaired people by using high-definition cameras and screens. Integrating eye tracking technology with various devices and platforms such as laptops, smartphones, VR headsets and social media to enable new ways of communication, interaction and entertainment. Improving the accuracy, reliability and usability of smart eyes health detection application by using advanced algorithms, sensors and data analysis methods. Expanding the scope of smart eyes health detection application to cover more eye and health conditions such as glaucoma, diabetes, and hypertension, etc. Collaborating with other smart healthcare systems that use IoT technologies to provide holistic and personalized care for patients in remote and resource-limited settings. Smart eyes health detection application is a rapidly evolving technology that has the potential to transform healthcare delivery and improve quality of life for millions of people around the world. However, there are also some challenges and limitations that need to be addressed such as privacy, security, ethical and regulatory issues. Therefore, it is important to conduct further research and development on smart eyes health detection application with a multidisciplinary approach that involves stakeholders from different fields and sectors.

REFERENCE

[9]. Micheal C. Munson1*, Devon L. Plewman1*, Katelyn M. Baumer1, Ryan Henning2, Collin T. Zahler1, Alexander T. Kietzman1, Alexandra A. Beard1, Shizuo Mukai3,4, Lisa Diller4,5, Greg Hamerly2, Bryan F. Shaw1†

[13]. J. Lee et al. “Driver monitoring system based on eye tracking and pupil size variation”. 1-1, 2022