
 © 2025 IJRTI | Volume 10, Issue 4 April 2025 | ISSN: 2456-3315

IJRTI2504328 International Journal for Research Trends and Innovation (www.ijrti.org) d258

Enhancing Software Efficiency Through

Automated Code Refactoring and Optimization

Pratyosh Desaraju

Independent Researcher

University of Central Missouri, USA

Abstract— Simplicity, maintainability and breadth of the software code bases is once again being taken into consideration

because of the modern software development dominance. Considered a viable option to mitigate code quality concerns,

performance bottlenecks, and long-term sustainability of software engineers' projects, automated code refactoring and

optimization provide an encouraging path forward. Rapid adoption of artificial intelligence, most notably machine

learning and deep learning models, makes it possible for software engineers to start automating the refactoring process.

This review paper presents a specific alternative on the practice and methods, and tools employed in automated code

refactoring and optimization. It also discusses current developments within artificial intelligence driven approaches, and

the software engineers' adoption of such approaches into current software engineering frameworks, along with

established metrics on performance and maintainability.

Index Terms— Automated Refactoring, Code Optimization, Artificial Intelligence, Software Efficiency

1. Introduction

The process of creating the programs has introduced the culture of rapidity, sophistication and movement. Framework

development and programming paradigm development are both fast but the challenge of ensuring the quality of code that can be

utilized is still present. Code bases that may stretch back years, technical debt, poor design choices, amongst other reasons, no

longer perform as efficiently as developers would hope. In any case, sub-optimal constructs can lead to reduced effectiveness of

subsequent development effort. Code refactoring is considered one process to improve code quality by taking existing code and

improving them without changing the behavior of the existing code. Code refactoring has been regarded as a means to improve

readability, maintainability and performance. Refactoring manually can take significant time, money and can be error-prone

processes. Now with artificial intelligence evolving, refactoring is starting to be more automated, reliable, and scalable.

Automated refactoring is more than the process of restructuring code for improved practices. Automated refactoring is a means of

support for software optimization! Artificial intelligence models can detect patterns, detect inefficiencies, and suggest solutions

that previously depended on a human. This review paper will focus on contribution to AI-assisted code refactoring and

optimization. In this paper we will discuss models, frameworks and methods reviewed in current literature, and discuss their role

in software engineering.

2. Foundations of Automated Code Refactoring

Automated code refactoring is based on the premise that software systems can be continuously improved upon without altering

the program's functionality. In traditional environments, developers would apply specific refactoring mechanisms to apply a

certain form of change. For example, developers would use a function extraction technique, a rename mechanism or change the

hierarchy around certain classes. It took expertise and time, and developers and testers took various precautions before refactoring

a part of the system as intentional, risk-taking exploration. Artificial intelligence incorporates automation of this refactoring cycle

by leveraging knowledge learned from large code repositories and examining how many ways developers applied refactoring

techniques into refactoring solutions [1].

Machine learning and deep learning models both exhibit their strengths for our approach since both are better equipped to define a

pattern from large amounts of code data which have been analyzed. Their strength resides in identifying repeatable inefficiencies

such as, redundancies, code smells, anti-patterns, and propose transformations. The proposed transformations do not only address

productivity utilizing technical debt reductions, but they also improve execution performance. Therefore, in some sense

automated refactoring is a fusion of both program analysis and machine intelligence [2].

The secret to successful automated refactoring is to balance improvements to the maintainability of the code with the performance

improvement. In particular, optimizing too far may render the code difficult to read while restructuring too far may introduce code

bugs. Artificial Intelligence techniques have shown considerable potential in making these trade-offs through reinforcement

learning and graph neural networks to make trade-offs between competing objectives [3].

3. Artificial Intelligence in Code Optimization

AI represents new ways for optimizing legacy and modern code bases. Legacy systems, many of which still support mission-

critical industries and activities, have integrations of process entities, with stability and familiarity, which have buildup

inefficiencies for decades. The manual optimization of these systems presents many risks and challenges to the stability of the

http://www.ijrti.org/

 © 2025 IJRTI | Volume 10, Issue 4 April 2025 | ISSN: 2456-3315

IJRTI2504328 International Journal for Research Trends and Innovation (www.ijrti.org) d259

business or service being built upon them, if it can be done at all. AI models for optimization can obtain this information

automatically through the use of execution paths, resource utilization, and memory management to rewrite the program directly.

After that, they will be able to identify the most effective methods of reorganizing the code (without altering the target behavior)

by the means of heuristic optimization [4].

The optimization that is done with the help of AI is not restricted to the legacy code bases. The ongoing integration and the

constant deployment which happens in the course of an entirely modern agile development is also to be taken into consideration.

Impact of change may result to inefficiency that when not managed effectively may add up. AI models of optimization can be

incorporated into the early development pipeline, for instance, to provide more integrated and timely feedback for code

efficiencies, meaning that optimization can be taken parallel to development of features instead of as a distinct activity [5].

One main benefit of AI-based optimization is capitalizing on contextual awareness. While rule-based optimizers typically

optimize based on static rules, AI models leverage the overall context of the software system and recommend optimizations for

both current performance objectives and future maintainability. As an example, reinforcement learning systems can investigate

several possible refactorings and find the most efficient path to maximize performance improvements [3].

4. Human-AI Collaboration in Refactoring

Integrating artificial intelligence into the refactoring process does not negate the need for human developers. On the contrary, it

provides a collaborative environment in which humans and AI systems can complement each other. AI models could point out

areas where it could be improved, and propose refactorings, but the human approval is a factor that makes sure that refactorers are

operating within the project boundaries, domain knowledge and quality of code. It is known that AI agents created in the context

of the interactive model which are created to assist in the refactoring process can be used to streamline the decision making

strategies and the cognitive load placed on a developer and enhance human and artificial work [6].

This type of learning also proves to be a very convenient approach to work with massive enterprise projects. The intelligent

assistants may be the AI agents that will monitor the quality of codes, make recommendations, and automate the routine job. This

will keep developers in check and even part of the ultimate decision of similar and eliminate any confusion that may occur with

respect to the architectural concepts and business need. This lies within the transparency, explainability and trust in AI-based

refactoring systems that is concerned with the type of relationships between collaborative relationships of AI agents and human

agents [7].

5. Intelligent Systems for Automated Review and Refactoring

Automated code refactoring is being increasingly augmented by automated review services. Intelligence systems like Efficode

exemplifies how AI can streamline both refactoring and review processes. The systems automatically detect inconsistencies,

highlight less-than-optimal structures, and propose transformations, which reduces developers' cognitive load. Review and

refactoring leverage each other to ensure that changes performed are as efficient as possible while still meeting coding standards

and project-specific requirements [7].

Effective coupling of refactoring to the automated review processes has implications for software governance. Projects with

distributed teams often lack consistency and quality of code. Intelligent systems can help streamline refactoring, ensuring

uniformity across code contributions. This promotes collaboration, and improves development cycles, because fewer manual

interventions in the code reviews [8].

6. Applications in Web Development and Modern Frameworks

Refactoring and optimization is not only limited to general-purpose programming, there are also specialized domains like web

development, frameworks evolve quickly, and web projects have large resource consumption and concurrency requirements. AI-

assisted optimization has shown promise in optimizing .NET web development through the automatic refactoring of inefficient

code and facilitating optimal use of resources [8].

Web applications are now expected to be efficient in code performance and throughout their application cycle, as well as meet ing

continually changing user needs. AI systems that are embedded within development environments can identify typical

inefficiencies, refactor code, and provide decision support for resource use dynamically for web applications. This provides

opportunities to maintain competition for web applications by performance and user experience, while conceiving ways to reduce

technical debt [8].

7. Hybrid Models for Predicting Refactoring Needs

Automated refactoring is developing hybrid approaches based on a combination of artificial intelligence (AI) technologies. For

seemingly autonomous activities, hybrid models build on the distinct functionalities of several AI methods by combining

approaches, such as using both reinforcement learning (RL) and graph neural networks (GNN) autoencoders, to determine

refactoring-quality objects [3]. Furthermore, hybrid networking-based deep learning systems offer some more informed,

predictive suggestions about where and when to refactor, allowing for quicker proactive instead of reactive optimization [9].

http://www.ijrti.org/

 © 2025 IJRTI | Volume 10, Issue 4 April 2025 | ISSN: 2456-3315

IJRTI2504328 International Journal for Research Trends and Innovation (www.ijrti.org) d260

Table 1 illustrates the comparative performance of different AI-driven approaches to refactoring and optimization.

Table 1: Comparative Analysis of AI-Driven Refactoring Approaches

Approach Techniques Used Key Benefits Reference

AI-driven refactoring ML and deep learning models Pattern recognition and efficiency [1]

Automated refactoring

frameworks
Code quality enhancement with AI

Reduced human error, increased

efficiency
[2]

Hybrid AI models GNNs, RL, Autoencoders
Balanced performance and

maintainability
[3]

Legacy optimization ML for legacy codebases Risk reduction, improved performance [4]

AI in agile pipelines Real-time optimization
Continuous integration and rapid

adaptation
[5]

Human-AI collaboration Interactive AI agents Decision-making support and oversight [6]

Automated review systems Intelligent refactoring and review tools Coding standardization and governance [7]

Domain-specific applications
AI-assisted optimization in web

frameworks
Enhanced scalability and responsiveness [8]

8. Impact on Test Code and Quality Assurance

Test code is a component of software projects that doesn't receive too much attention, while so much focus is always on

production code. Inefficient or poorly designed test code can negatively affect quality assurance and inhibit the growth of your

software. Research shows that testing code refactoring can greatly affect test code quality/performance; it has higher dividend

than the first envisioned and automated test code refactoring procedures returned improved reliability and coverage [10].

The redundancy can be reduced during the test code refactor under the support of automation, and the testing plans can be

corrected to the new functionality and abilities of the system. This is particular in continuous integration domains whereby a

significant number of small-scale alterations can be executed within a very short time and which in most cases result in a test code

that is no longer stable. The unneeded systems in test code will be handled when it is combined with the suitable AI applications

whereby test code assertions are reorganized, made more maintainable and there is a likelihood of increasing the probability of

identifying software errors [10].

9. Refactoring Prediction Frameworks

The final decision to refactoring of the codes at which point and when is one of the most serious issues pertaining to the

refactoring process of the code. Any kind of reactive refactoring is actually not a relevant kind of ref-actoring as it may cause the

wasting of time of developers not mentioning the fact that it may present some kind of hidden problems. The use of hybrid

networking has also been applied in the creation of predictive refactoring structures that not only predict when code refactoring is

necessary, but also what form of code refactoring is necessary, using patterns in the code evolution [9].

These predictive models do not only consider the code structural feature, but also semantic feature of the code base with

perspective of indicating the code smells and anti-patterns. The models can give the finesse to predictions because it can be

hybridized with recurrent units due to the hybrid architectures. This active method minimizes the look up that the programmer has

to do in addition to the fact that the overall system becomes maintainable. The concept of Proactive refactoring can be applied to a

large scale system where the system is sure to have a degraded code as the time elapses with the existence of the software system.

Such predictive models are also trained using historic data that is based on version control system that helps in generalizing the

models across the coding style or project domain. This therefore makes these models more effective and useful in actual life. In

line with this, predictions refactoring is required such that the existing software systems could be improved through continuous

quality improvement [9].

10. Optimization of Refactoring Sequences

The code smells and the technical debt tend to be in the form of linked groups. One such aspect can diffuse through the system

and thus to prevent the conflict, redundancy or sub-optimal development, the sequence in which refactoring occurs should be

learned. The models that have been invented produced the optimized sequence of refactoring moves which will systematically

remove the smells in the larger system without destabilizing it have been found in the literature [11].

These models apply the principles of object-oriented and graph mathematics to determine the relationship between the code

objects and assess a forre-factoring process that reduces the odours that already exist in the existing code and do not lead to the

formation of new odours. The effectiveness of the optimized sequences is based on the actions like cohesion that are associated

with coupling and maintainability index that are relevant in the long-term quality of the maintenance of the code.

http://www.ijrti.org/

 © 2025 IJRTI | Volume 10, Issue 4 April 2025 | ISSN: 2456-3315

IJRTI2504328 International Journal for Research Trends and Innovation (www.ijrti.org) d261

Figure 1 below demonstrates a conceptual flow of how an optimized refactoring sequence is generated using AI techniques.

Figure 1: Diagram of AI-Based Optimized Refactoring Sequence Workflow

Source: Derived from [11]

11. Performance Gains from Automated Optimization

It is important to quantify any performance improvements associated with AI-enabled code optimization in order to judge their

effectiveness. Recent research (examined programming language types) shows that automated refactoring can provide real-world

benefits, with support for significant improvements in execution speed, memory usage, and load times. The improvements are

more significant for larger or legacy codebases, where such traditional optimization techniques have not been able to improve

performance as fully as possible with classical methods, [1][4].

The figure below shows the average performance improvement across the range of software systems examined in this study,

including before and after automated code optimization using AI techniques.

http://www.ijrti.org/

 © 2025 IJRTI | Volume 10, Issue 4 April 2025 | ISSN: 2456-3315

IJRTI2504328 International Journal for Research Trends and Innovation (www.ijrti.org) d262

Figure 2: Performance Improvement from Automated Refactoring

Source: Data extrapolated from [1], [4], and [5]

The graph indicates that execution time reduced by up to 35%, in some of the projects, while the memory use consistently

reduced across all projects. Such improvements indicate the feasibility of automated optimization to address the high-performance

computing challenges in areas such as financial services, scientific simulations, and real-time systems.

12. Challenges and Limitations

Despite many advancements, there are considerable challenges to automated refactoring and optimization. First, semantics

preservation is important. While AI models can find and refactor code, it is non-trivial to validate that the code remains

functionally equivalent. This is particularly challenging in large, complex systems with many dependencies, and ambiguous

undocumented behaviors [2].

Second, there are challenges associated with model generalization. An AI system trained on one set of code repositories in

practice might not perform well when put in another repository because of the different coding, architectural patterns, and

business rules. Both transfer learning and continuous learning techniques are being researched to counter this issue, but further

research is necessary to achieve reliable cross-domain generalization [3].

Third, the lack of interpretability of AI-based decisions can be another barrier to adoption. Developers typically do not want to

blindly follow a recommendation produced using a black-box without understanding the rationale behind the recommendation.

There are many efforts with embedded explainability in AI-based refactoring tools, to foster trust and transparency [6][7].

Additionally, integrating into existing development workflows can be difficult. Legacy development environments may have no

support for even basic refactoring tools, let alone AI agents. But even supporting AI agents and adding a layer of costs and

complexity to CI/CD pipelines, remains non-trivial for smaller (and larger) organizations [4].

13. Future Directions

The development of automated code refactoring and optimization will likely be characterized by the convergence of various

technologies. Through natural language processing integration, models will be able to factor in developer comments and

documentation, allowing refactored methods to be more in line with a human's intent.

Another promising direction is multimodal learning. Pairing source code with execution traces, telemetry, and bug reports could

allow AI models to be more aware of the context, so they will suggest more on-target and context-sensitive refactoring options

[5].

Lastly, there is promise through federated learning - training models in distributed code bases without centralizing training data.

This can support privacy-aware collaborative learning, which is important to sensitive domains that use reference code such as

health or finance.

http://www.ijrti.org/

 © 2025 IJRTI | Volume 10, Issue 4 April 2025 | ISSN: 2456-3315

IJRTI2504328 International Journal for Research Trends and Innovation (www.ijrti.org) d263

Ongoing advancements in human-AI interaction will be critical. As interactive refactoring agents become more advanced, their

capability to collaborate with developers live, understand coding preferences and explain their choices will be core to their

acceptance [6]. There is also the possibility that AI refactoring solutions can be created at a greater level with the low-code and

no-code platform.

14. Conclusion

The artificial intelligence has increased the speed of automatic code refactoring and optimization astronomically. The AI

constructs identified in this review could have immense potential of achieving the enhanced performance and maintainability of

the software and reducing the mental load of a software developer when dealing with the tedious and even complex software

functions. The sphere of software engineering is being affected by the deep learning, the reinforcement learning, and the hybrid

prediction methods.

However, despite these concerns on the maintenance of semantics and generalizability and interpretability, research is still being

done at all levels of rigor in the field. The collaboration between developers and AI (agents) to undertake the software (in the

form of collaborating) have the potential to influence the manner in which the codebases will become efficient, resilient, and

adaptive. The direction will be based on the quality, scalable software systems where automated refactoring and code

optimization will be the result of AI.

15. References

[1] Polu, O. R. AI-Driven Automatic Code Refactoring for Performance Optimization.

[2] Suresh Kumar, V., Alphonsa, J., & Abisha, B. (2025). 10 Automating Code Refactoring with AI: Enhancing Code Quality and

Efficiency. Generative AI for Software Development: Code Generation, Error Detection, Software Testing, 231.

[3] Prasad, R. D., & Srivenkatesh, M. U. K. T. E. V. I. (2025). A hybrid model combining graph neural networks, reinforcement

learning, and autoencoders for automated code refactoring and optimization. Journal of Theoretical and Applied Information

Technology, 103(1).

[4] Podduturi, S. (2025). AI-Driven Code Optimization: Leveraging ML to Refactor Legacy Codebases. North American Journal

of Engineering Research, 6(1).

[5] Konakanchi, S. (2025). Artificial Intelligence in Code Optimization and Refactoring. Journal of Data and Digital Innovation

(JDDI), 2(1), 9-35.

[6] Mo, T., Jiang, Z., & Zheng, Q. (2025). Interactive AI Agent for Code Refactoring Assistance: A Study on Decision-Making

Strategies and Human-Agent Collaboration Effectiveness. Academia Nexus Journal, 4(1).

[7] Firos, Z. Efficode: An Intelligent System for Automated Code Review and Refactoring.

 [8] Shethiya, A. S. (2025). AI-Assisted Code Generation and Optimization in. NET Web Development. Annals of Applied

Sciences, 6(1).

[9] Pandiyavathi, T., & Sivakumar, B. (2025). Software Refactoring Network: An Improved Software Refactoring Prediction

Framework Using Hybrid Networking‐Based Deep Learning Approach. Journal of Software: Evolution and Process, 37(2),

e2734.

[10] Martins, L., Pontillo, V., Costa, H., Ferrucci, F., Palomba, F., & Machado, I. (2025). Test code refactoring unveiled: where

and how does it affect test code quality and effectiveness?. Empirical Software Engineering, 30(1), 27.

[11] Maini, R., Kaur, N., & Kaur, A. (2025). Optimized Refactoring Sequence for Object-Oriented Code Smells. International

Journal of Environmental Sciences, 11(7s), 593-612.

http://www.ijrti.org/

