© 2025 IJRTI | Volume 10, Issue 4 April 2025 | ISSN: 2456-3315

Enhancing Software Efficiency Through
Automated Code Refactoring and Optimization

Pratyosh Desaraju

Independent Researcher
University of Central Missouri, USA

Abstract— Simplicity, maintainability and breadth of the software code bases is once again being taken into consideration
because of the modern software development dominance. Considered a viable option to mitigate code quality concerns,
performance bottlenecks, and long-term sustainability of software engineers' projects, automated code refactoring and
optimization provide an encouraging path forward. Rapid adoption of artificial intelligence, most notably machine
learning and deep learning models, makes it possible for software engineers to start automating the refactoring process.
This review paper presents a specific alternative on the practice and methods, and tools employed in automated code
refactoring and optimization. It also discusses current developments within artificial intelligence driven approaches, and
the software engineers' adoption of such approaches into current software engineering frameworks, along with
established metrics on performance and maintainability.

Index Terms— Automated Refactoring, Code Optimization, Artificial Intelligence, Software Efficiency
1. Introduction

The process of creating the programs has introduced the culture of rapidity, sophistication and movement. Framework
development and programming paradigm development are both fast but the challenge of ensuring the quality of code that can be
utilized is still present. Code bases that may stretch back years, technical debt, poor design choices, amongst other reasons, no
longer perform as efficiently as developers would hope. In any case, sub-optimal constructs can lead to reduced effectiveness of
subsequent development effort. Code refactoring is considered one process to improve code quality by taking existing code and
improving them without changing the behavior of the existing code. Code refactoring has been regarded as a means to improve
readability, maintainability and performance. Refactoring manually can take significant time, money and can be error-prone
processes. Now with artificial intelligence evolving, refactoring is starting to be more automated, reliable, and scalable.

Automated refactoring is more than the process of restructuring code for improved practices. Automated refactoring is a means of
support for software optimization! Artificial intelligence models can detect patterns, detect inefficiencies, and suggest solutions
that previously depended on a human. This review paper will focus on contribution to Al-assisted code refactoring and
optimization. In this paper we will discuss models, frameworks and methods reviewed in current literature, and discuss their role
in software engineering.

2. Foundations of Automated Code Refactoring

Automated code refactoring is based on the premise that software systems can be continuously improved upon without altering
the program's functionality. In traditional environments, developers would apply specific refactoring mechanisms to apply a
certain form of change. For example, developers would use a function extraction technique, a rename mechanism or change the
hierarchy around certain classes. It took expertise and time, and developers and testers took various precautions before refactoring
a part of the system as intentional, risk-taking exploration. Artificial intelligence incorporates automation of this refactoring cycle
by leveraging knowledge learned from large code repositories and examining how many ways developers applied refactoring
techniques into refactoring solutions [1].

Machine learning and deep learning models both exhibit their strengths for our approach since both are better equipped to define a
pattern from large amounts of code data which have been analyzed. Their strength resides in identifying repeatable inefficiencies
such as, redundancies, code smells, anti-patterns, and propose transformations. The proposed transformations do not only address
productivity utilizing technical debt reductions, but they also improve execution performance. Therefore, in some sense
automated refactoring is a fusion of both program analysis and machine intelligence [2].

The secret to successful automated refactoring is to balance improvements to the maintainability of the code with the performance
improvement. In particular, optimizing too far may render the code difficult to read while restructuring too far may introduce code
bugs. Artificial Intelligence techniques have shown considerable potential in making these trade-offs through reinforcement
learning and graph neural networks to make trade-offs between competing objectives [3].

3. Artificial Intelligence in Code Optimization

Al represents new ways for optimizing legacy and modern code bases. Legacy systems, many of which still support mission-
critical industries and activities, have integrations of process entities, with stability and familiarity, which have buildup
inefficiencies for decades. The manual optimization of these systems presents many risks and challenges to the stability of the

IJRTI2504328 International Journal for Research Trends and Innovation (www.ijrti.org) d258

http://www.ijrti.org/

© 2025 IJRTI | Volume 10, Issue 4 April 2025 | ISSN: 2456-3315
business or service being built upon them, if it can be done at all. Al models for optimization can obtain this information
automatically through the use of execution paths, resource utilization, and memory management to rewrite the program directly.
After that, they will be able to identify the most effective methods of reorganizing the code (without altering the target behavior)
by the means of heuristic optimization [4].

The optimization that is done with the help of Al is not restricted to the legacy code bases. The ongoing integration and the
constant deployment which happens in the course of an entirely modern agile development is also to be taken into consideration.
Impact of change may result to inefficiency that when not managed effectively may add up. Al models of optimization can be
incorporated into the early development pipeline, for instance, to provide more integrated and timely feedback for code
efficiencies, meaning that optimization can be taken parallel to development of features instead of as a distinct activity [5].

One main benefit of Al-based optimization is capitalizing on contextual awareness. While rule-based optimizers typically
optimize based on static rules, Al models leverage the overall context of the software system and recommend optimizations for
both current performance objectives and future maintainability. As an example, reinforcement learning systems can investigate
several possible refactorings and find the most efficient path to maximize performance improvements [3].

4. Human-Al Collaboration in Refactoring

Integrating artificial intelligence into the refactoring process does not negate the need for human developers. On the contrary, it
provides a collaborative environment in which humans and Al systems can complement each other. Al models could point out
areas where it could be improved, and propose refactorings, but the human approval is a factor that makes sure that refactorers are
operating within the project boundaries, domain knowledge and quality of code. It is known that Al agents created in the context
of the interactive model which are created to assist in the refactoring process can be used to streamline the decision making
strategies and the cognitive load placed on a developer and enhance human and artificial work [6].

This type of learning also proves to be a very convenient approach to work with massive enterprise projects. The intelligent
assistants may be the Al agents that will monitor the quality of codes, make recommendations, and automate the routine job. This
will keep developers in check and even part of the ultimate decision of similar and eliminate any confusion that may occur with
respect to the architectural concepts and business need. This lies within the transparency, explainability and trust in Al-based
refactoring systems that is concerned with the type of relationships between collaborative relationships of Al agents and human
agents [7].

5. Intelligent Systems for Automated Review and Refactoring

Automated code refactoring is being increasingly augmented by automated review services. Intelligence systems like Efficode
exemplifies how Al can streamline both refactoring and review processes. The systems automatically detect inconsistencies,
highlight less-than-optimal structures, and propose transformations, which reduces developers' cognitive load. Review and
refactoring leverage each other to ensure that changes performed are as efficient as possible while still meeting coding standards
and project-specific requirements [7].

Effective coupling of refactoring to the automated review processes has implications for software governance. Projects with
distributed teams often lack consistency and quality of code. Intelligent systems can help streamline refactoring, ensuring
uniformity across code contributions. This promotes collaboration, and improves development cycles, because fewer manual
interventions in the code reviews [8].

6. Applications in Web Development and Modern Frameworks

Refactoring and optimization is not only limited to general-purpose programming, there are also specialized domains like web
development, frameworks evolve quickly, and web projects have large resource consumption and concurrency requirements. Al-
assisted optimization has shown promise in optimizing .NET web development through the automatic refactoring of inefficient
code and facilitating optimal use of resources [8].

Web applications are now expected to be efficient in code performance and throughout their application cycle, as well as meeting
continually changing user needs. Al systems that are embedded within development environments can identify typical
inefficiencies, refactor code, and provide decision support for resource use dynamically for web applications. This provides
opportunities to maintain competition for web applications by performance and user experience, while conceiving ways to reduce
technical debt [8].

7. Hybrid Models for Predicting Refactoring Needs

Automated refactoring is developing hybrid approaches based on a combination of artificial intelligence (Al) technologies. For
seemingly autonomous activities, hybrid models build on the distinct functionalities of several Al methods by combining
approaches, such as using both reinforcement learning (RL) and graph neural networks (GNN) autoencoders, to determine
refactoring-quality objects [3]. Furthermore, hybrid networking-based deep learning systems offer some more informed,
predictive suggestions about where and when to refactor, allowing for quicker proactive instead of reactive optimization [9].

IJRTI2504328 International Journal for Research Trends and Innovation (www.ijrti.org) d259

http://www.ijrti.org/

Table 1: Comparative Analysis of Al-Driven Refactoring Approaches

© 2025 IJRTI | Volume 10, Issue 4 April 2025 | ISSN: 2456-3315
Table 1 illustrates the comparative performance of different Al-driven approaches to refactoring and optimization.

|Approach | Techniques Used |Key Benefits |Reference|
|Al-driven refactoring |ML and deep learning models | Pattern recognition and efficiency 2] \
Automated refactoring . . Reduced human error, increased
frameworks Code quality enhancement with Al efficiency [2]
. Balanced performance and
Hybrid Al models GNNs, RL, Autoencoders maintainability [3]
Legacy optimization ML for legacy codebases ||Risk reduction, improved performance [[[4] \
L . . Continuous integration and rapid
Al in agile pipelines Real-time optimization adaptation [5]

[Human-Al collaboration

|[Interactive Al agents

| Decision-making support and oversight |[[6] \

|Automated review systems

Hlntelligent refactoring and review tools HCoding standardization and governance ||[7] \

Domain-specific applications

Al-assisted optimization in
frameworks

web

Enhanced scalability and responsiveness

(8]

8. Impact on Test Code and Quality Assurance

Test code is a component of software projects that doesn't receive too much attention, while so much focus is always on
production code. Inefficient or poorly designed test code can negatively affect quality assurance and inhibit the growth of your
software. Research shows that testing code refactoring can greatly affect test code quality/performance; it has higher dividend
than the first envisioned and automated test code refactoring procedures returned improved reliability and coverage [10].

The redundancy can be reduced during the test code refactor under the support of automation, and the testing plans can be
corrected to the new functionality and abilities of the system. This is particular in continuous integration domains whereby a
significant number of small-scale alterations can be executed within a very short time and which in most cases result in a test code
that is no longer stable. The unneeded systems in test code will be handled when it is combined with the suitable Al applications
whereby test code assertions are reorganized, made more maintainable and there is a likelihood of increasing the probability of

identifying software errors [10].

9. Refactoring Prediction Frameworks

The final decision to refactoring of the codes at which point and when is one of the most serious issues pertaining to the
refactoring process of the code. Any kind of reactive refactoring is actually not a relevant kind of ref-actoring as it may cause the
wasting of time of developers not mentioning the fact that it may present some kind of hidden problems. The use of hybrid
networking has also been applied in the creation of predictive refactoring structures that not only predict when code refactoring is
necessary, but also what form of code refactoring is necessary, using patterns in the code evolution [9].

These predictive models do not only consider the code structural feature, but also semantic feature of the code base with
perspective of indicating the code smells and anti-patterns. The models can give the finesse to predictions because it can be
hybridized with recurrent units due to the hybrid architectures. This active method minimizes the look up that the programmer has
to do in addition to the fact that the overall system becomes maintainable. The concept of Proactive refactoring can be applied to a
large scale system where the system is sure to have a degraded code as the time elapses with the existence of the software system.

Such predictive models are also trained using historic data that is based on version control system that helps in generalizing the
models across the coding style or project domain. This therefore makes these models more effective and useful in actual life. In
line with this, predictions refactoring is required such that the existing software systems could be improved through continuous

quality improvement [9].

10. Optimization of Refactoring Sequences

The code smells and the technical debt tend to be in the form of linked groups. One such aspect can diffuse through the system
and thus to prevent the conflict, redundancy or sub-optimal development, the sequence in which refactoring occurs should be
learned. The models that have been invented produced the optimized sequence of refactoring moves which will systematically
remove the smells in the larger system without destabilizing it have been found in the literature [11].

These models apply the principles of object-oriented and graph mathematics to determine the relationship between the code
objects and assess a forre-factoring process that reduces the odours that already exist in the existing code and do not lead to the
formation of new odours. The effectiveness of the optimized sequences is based on the actions like cohesion that are associated
with coupling and maintainability index that are relevant in the long-term quality of the maintenance of the code.

[JRTI2504328

International Journal for Research Trends and Innovation (www.ijrti.org)

http://www.ijrti.org/

© 2025 IJRTI | Volume 10, Issue 4 April 2025 | ISSN: 2456-3315
Figure 1 below demonstrates a conceptual flow of how an optimized refactoring sequence is generated using Al techniques.

Source Code Base

Al Model Inference
(GMMs, RL, Autoencoders)

Refactoring Opportunity
Identification

Optimization Strateqgy
Selection Engine

Refactoring Sequence
Generation

Refactored Code Base

Figure 1: Diagram of Al-Based Optimized Refactoring Sequence Workflow
Source: Derived from [11]

11. Performance Gains from Automated Optimization

It is important to quantify any performance improvements associated with Al-enabled code optimization in order to judge their
effectiveness. Recent research (examined programming language types) shows that automated refactoring can provide real-world
benefits, with support for significant improvements in execution speed, memory usage, and load times. The improvements are
more significant for larger or legacy codebases, where such traditional optimization techniques have not been able to improve
performance as fully as possible with classical methods, [1][4].

The figure below shows the average performance improvement across the range of software systems examined in this study,
including before and after automated code optimization using Al techniques.

IJRTI2504328 International Journal for Research Trends and Innovation (www.ijrti.org) d261

http://www.ijrti.org/

© 2025 IJRTI | Volume 10, Issue 4 April 2025 | ISSN: 2456-3315

50
¥F—~7 Before
Il After Refactoring
40%
40 A
35%
% 30 A
E 25%
4+
S
g
e 204
10 ~
0

Execution Time Memory Usage Load Time

Figure 2: Performance Improvement from Automated Refactoring
Source: Data extrapolated from [1], [4], and [5]

The graph indicates that execution time reduced by up to 35%, in some of the projects, while the memory use consistently
reduced across all projects. Such improvements indicate the feasibility of automated optimization to address the high-performance
computing challenges in areas such as financial services, scientific simulations, and real-time systems.

12. Challenges and Limitations

Despite many advancements, there are considerable challenges to automated refactoring and optimization. First, semantics
preservation is important. While Al models can find and refactor code, it is non-trivial to validate that the code remains
functionally equivalent. This is particularly challenging in large, complex systems with many dependencies, and ambiguous
undocumented behaviors [2].

Second, there are challenges associated with model generalization. An Al system trained on one set of code repositories in
practice might not perform well when put in another repository because of the different coding, architectural patterns, and
business rules. Both transfer learning and continuous learning techniques are being researched to counter this issue, but further
research is necessary to achieve reliable cross-domain generalization [3].

Third, the lack of interpretability of Al-based decisions can be another barrier to adoption. Developers typically do not want to
blindly follow a recommendation produced using a black-box without understanding the rationale behind the recommendation.
There are many efforts with embedded explainability in Al-based refactoring tools, to foster trust and transparency [6][7].

Additionally, integrating into existing development workflows can be difficult. Legacy development environments may have no
support for even basic refactoring tools, let alone Al agents. But even supporting Al agents and adding a layer of costs and
complexity to CI/CD pipelines, remains non-trivial for smaller (and larger) organizations [4].

13. Future Directions

The development of automated code refactoring and optimization will likely be characterized by the convergence of various
technologies. Through natural language processing integration, models will be able to factor in developer comments and
documentation, allowing refactored methods to be more in line with a human's intent.

Another promising direction is multimodal learning. Pairing source code with execution traces, telemetry, and bug reports could
allow Al models to be more aware of the context, so they will suggest more on-target and context-sensitive refactoring options

[5].

Lastly, there is promise through federated learning - training models in distributed code bases without centralizing training data.
This can support privacy-aware collaborative learning, which is important to sensitive domains that use reference code such as
health or finance.

IJRTI2504328 International Journal for Research Trends and Innovation (www.ijrti.org) d262

http://www.ijrti.org/

© 2025 IJRTI | Volume 10, Issue 4 April 2025 | ISSN: 2456-3315
Ongoing advancements in human-Al interaction will be critical. As interactive refactoring agents become more advanced, their
capability to collaborate with developers live, understand coding preferences and explain their choices will be core to their
acceptance [6]. There is also the possibility that Al refactoring solutions can be created at a greater level with the low-code and
no-code platform.

14. Conclusion

The artificial intelligence has increased the speed of automatic code refactoring and optimization astronomically. The Al
constructs identified in this review could have immense potential of achieving the enhanced performance and maintainability of
the software and reducing the mental load of a software developer when dealing with the tedious and even complex software
functions. The sphere of software engineering is being affected by the deep learning, the reinforcement learning, and the hybrid
prediction methods.

However, despite these concerns on the maintenance of semantics and generalizability and interpretability, research is still being
done at all levels of rigor in the field. The collaboration between developers and Al (agents) to undertake the software (in the
form of collaborating) have the potential to influence the manner in which the codebases will become efficient, resilient, and
adaptive. The direction will be based on the quality, scalable software systems where automated refactoring and code
optimization will be the result of Al.

15. References

[1] Polu, O. R. Al-Driven Automatic Code Refactoring for Performance Optimization.

[2] Suresh Kumar, V., Alphonsa, J., & Abisha, B. (2025). 10 Automating Code Refactoring with Al: Enhancing Code Quality and
Efficiency. Generative Al for Software Development: Code Generation, Error Detection, Software Testing, 231.

[3] Prasad, R. D., & Srivenkatesh, M. U. K. T. E. V. I. (2025). A hybrid model combining graph neural networks, reinforcement
learning, and autoencoders for automated code refactoring and optimization. Journal of Theoretical and Applied Information
Technology, 103(1).

[4] Podduturi, S. (2025). Al-Driven Code Optimization: Leveraging ML to Refactor Legacy Codebases. North American Journal
of Engineering Research, 6(1).

[5] Konakanchi, S. (2025). Artificial Intelligence in Code Optimization and Refactoring. Journal of Data and Digital Innovation
(JDDI), 2(1), 9-35.

[6] Mo, T., Jiang, Z., & Zheng, Q. (2025). Interactive Al Agent for Code Refactoring Assistance: A Study on Decision-Making
Strategies and Human-Agent Collaboration Effectiveness. Academia Nexus Journal, 4(1).

[7] Firos, Z. Efficode: An Intelligent System for Automated Code Review and Refactoring.

[8] Shethiya, A. S. (2025). Al-Assisted Code Generation and Optimization in. NET Web Development. Annals of Applied
Sciences, 6(1).

[9] Pandiyavathi, T., & Sivakumar, B. (2025). Software Refactoring Network: An Improved Software Refactoring Prediction
Framework Using Hybrid Networking-Based Deep Learning Approach. Journal of Software: Evolution and Process, 37(2),
e2734.

[10] Martins, L., Pontillo, V., Costa, H., Ferrucci, F., Palomba, F., & Machado, I. (2025). Test code refactoring unveiled: where
and how does it affect test code quality and effectiveness?. Empirical Software Engineering, 30(1), 27.

[11] Maini, R., Kaur, N., & Kaur, A. (2025). Optimized Refactoring Sequence for Object-Oriented Code Smells. International
Journal of Environmental Sciences, 11(7s), 593-612.

IJRTI2504328 International Journal for Research Trends and Innovation (www.ijrti.org) d263

http://www.ijrti.org/

