IJRTI
International Journal for Research Trends and Innovation
International Peer Reviewed & Refereed Journals, Open Access Journal
ISSN Approved Journal No: 2456-3315 | Impact factor: 8.14 | ESTD Year: 2016
Scholarly open access journals, Peer-reviewed, and Refereed Journals, Impact factor 8.14 (Calculate by google scholar and Semantic Scholar | AI-Powered Research Tool) , Multidisciplinary, Monthly, Indexing in all major database & Metadata, Citation Generator, Digital Object Identifier(DOI)

Call For Paper

For Authors

Forms / Download

Published Issue Details

Editorial Board

Other IMP Links

Facts & Figure

Impact Factor : 8.14

Issue per Year : 12

Volume Published : 10

Issue Published : 115

Article Submitted : 19696

Article Published : 8087

Total Authors : 21392

Total Reviewer : 770

Total Countries : 147

Indexing Partner

Licence

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Published Paper Details
Paper Title: Machine Learning Approach for Improved PTSD Diagnosis
Authors Name: P.Venkata Sai , Kahol Gaurav B.U , R.Rajesh Kumar
Download E-Certificate: Download
Author Reg. ID:
IJRTI_180511
Published Paper Id: IJRTI1810019
Published In: Volume 3 Issue 10, October-2018
DOI:
Abstract: Post-traumatic stress disorder (PTSD) is a traumatic-stressor related disorder developed by exposure to a traumatic or adverse environmental event that caused serious harm or injury. Structured interview is the only widely accepted clinical practice for PTSD diagnosis but suffers from several limitations including the stigma associated with the disease. Diagnosis of PTSD patients by analyzing speech signals has been investigated as an alternative since recent years, where speech signals are processed to extract frequency features and these features are then fed into a classification model for PTSD diagnosis. In this paper, we developed a deep belief network (DBN) model combined with a transfer learning (TL) strategy for PTSD diagnosis. We computed three categories of speech features and utilized the DBN model to fuse these features. The TL strategy was utilized to transfer knowledge learned from a large speech recognition database, TIMIT, for PTSD detection where PTSD patient data is difficult to collect. We evaluated the proposed methods on two PTSD speech databases, each of which consists of audio recordings from 26 patients. We compared the proposed methods with other popular methods and showed that the state-of-the-art support vector machine (SVM) classifier only achieved an accuracy of 57.68%, and TL strategy boosted the performance of the DBN from 61.53% to 74.99%. Altogether, our method provides a pragmatic and promising tool for PTSD diagnosis.
Keywords:
Cite Article: "Machine Learning Approach for Improved PTSD Diagnosis", International Journal of Science & Engineering Development Research (www.ijrti.org), ISSN:2455-2631, Vol.3, Issue 10, page no.104 - 112, October-2018, Available :http://www.ijrti.org/papers/IJRTI1810019.pdf
Downloads: 000205091
ISSN: 2456-3315 | IMPACT FACTOR: 8.14 Calculated By Google Scholar| ESTD YEAR: 2016
An International Scholarly Open Access Journal, Peer-Reviewed, Refereed Journal Impact Factor 8.14 Calculate by Google Scholar and Semantic Scholar | AI-Powered Research Tool, Multidisciplinary, Monthly, Multilanguage Journal Indexing in All Major Database & Metadata, Citation Generator
Publication Details: Published Paper ID: IJRTI1810019
Registration ID:180511
Published In: Volume 3 Issue 10, October-2018
DOI (Digital Object Identifier):
Page No: 104 - 112
Country: Kothapeta, Andhra Pradesh, India
Research Area: Engineering
Publisher : IJ Publication
Published Paper URL : https://www.ijrti.org/viewpaperforall?paper=IJRTI1810019
Published Paper PDF: https://www.ijrti.org/papers/IJRTI1810019
Share Article:

Click Here to Download This Article

Article Preview
Click Here to Download This Article

Major Indexing from www.ijrti.org
Google Scholar ResearcherID Thomson Reuters Mendeley : reference manager Academia.edu
arXiv.org : cornell university library Research Gate CiteSeerX DOAJ : Directory of Open Access Journals
DRJI Index Copernicus International Scribd DocStoc

ISSN Details

ISSN: 2456-3315
Impact Factor: 8.14 and ISSN APPROVED, Journal Starting Year (ESTD) : 2016

DOI (A digital object identifier)


Providing A digital object identifier by DOI.ONE
How to Get DOI?

Conference

Open Access License Policy

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License

Creative Commons License This material is Open Knowledge This material is Open Data This material is Open Content

Important Details

Join RMS/Earn 300

IJRTI

WhatsApp
Click Here

Indexing Partner