UGC CARE norms ugc approved journal norms IJRTI Research Journal

Click Here

International Journal for Research Trends and Innovation
International Peer Reviewed & Refereed Journals, Open Access Journal
ISSN Approved Journal No: 2456-3315 | Impact factor: 8.14 | ESTD Year: 2016
Scholarly open access journals, Peer-reviewed, and Refereed Journals, Impact factor 8.14 (Calculate by google scholar and Semantic Scholar | AI-Powered Research Tool) , Multidisciplinary, Monthly, Indexing in all major database & Metadata, Citation Generator, Digital Object Identifier(DOI)

Call For Paper

For Authors

Forms / Download

Published Issue Details

Editorial Board

Other IMP Links

Facts & Figure

Impact Factor : 8.14

Issue per Year : 12

Volume Published : 8

Issue Published : 84

Article Submitted : 7736

Article Published : 3946

Total Authors : 10256

Total Reviewer : 547

Total Countries : 81

Indexing Partner


This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Published Paper Details
Paper Title: Using Machine Learning Algorithms for Automatic Cyber Bullying Detection in Arabic Social Media
Authors Name: Dr K Pavan Kumar , Syed Mohammed Nadeem
Download E-Certificate: Download
Author Reg. ID:
Published Paper Id: IJRTI2210013
Published In: Volume 7 Issue 10, October-2022
Abstract: Social media allows people interact to express their thoughts or feelings about different subjects. However, some of users may write offensive twits to other via social media which known as cyber bullying. Successful prevention depends on automatically detecting malicious messages. Automatic detection of bullying in the text of social media by analyzing the text "twits" via one of the machine learning algorithms. In this paper, we have reviewed algorithms for automatic cyberbullying detection in Arabic of machine learning, and after comparing the highest accuracy of these classifications we will propose the techniques Ridge Regression (RR) and Logistic Regression (LR), which achieved the highest accuracy between the various techniques applied in the automatic cyberbullying detection in English and between the techniques that was used in the sentiment analysis in Arabic text, The purpose of this work is applying these techniques for detecting cyberbullying in Arabic.
Keywords: Cyberbullying, Machine Learning (ML), Sentiment analysis, Cyberbullying Detection in Arabic.
Cite Article: "Using Machine Learning Algorithms for Automatic Cyber Bullying Detection in Arabic Social Media", International Journal of Science & Engineering Development Research (, ISSN:2455-2631, Vol.7, Issue 10, page no.82 - 85, October-2022, Available :
Downloads: 000202426
ISSN: 2456-3315 | IMPACT FACTOR: 8.14 Calculated By Google Scholar| ESTD YEAR: 2016
An International Scholarly Open Access Journal, Peer-Reviewed, Refereed Journal Impact Factor 8.14 Calculate by Google Scholar and Semantic Scholar | AI-Powered Research Tool, Multidisciplinary, Monthly, Multilanguage Journal Indexing in All Major Database & Metadata, Citation Generator
Publication Details: Published Paper ID: IJRTI2210013
Registration ID:184163
Published In: Volume 7 Issue 10, October-2022
DOI (Digital Object Identifier):
Page No: 82 - 85
Country: Kurnool, AP, India
Research Area: Computer Engineering 
Publisher : IJ Publication
Published Paper URL :
Published Paper PDF:
Share Article:

Click Here to Download This Article

Article Preview
Click Here to Download This Article

Major Indexing from
Google Scholar ResearcherID Thomson Reuters Mendeley : reference manager : cornell university library Research Gate CiteSeerX DOAJ : Directory of Open Access Journals
DRJI Index Copernicus International Scribd DocStoc

ISSN Details

ISSN: 2456-3315
Impact Factor: 8.14 and ISSN APPROVED
Journal Starting Year (ESTD) : 2016

DOI (A digital object identifier)

Providing A digital object identifier by DOI.ONE
How to Get DOI?


Open Access License Policy

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License

Creative Commons License This material is Open Knowledge This material is Open Data This material is Open Content

Important Details

Social Media

Join RMS/Earn 300


Indexing Partner